IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8843-d981805.html
   My bibliography  Save this article

Flat Unglazed Transpired Solar Collector: Performance Probability Prediction Approach Using Monte Carlo Simulation Technique

Author

Listed:
  • Sajna Parimita Panigrahi

    (Department of Mechanical and Automobile Engineering, School of Engineering and Technology, CHRIST (Deemed to Be University), Bangalore 560029, Karnataka, India)

  • Sarat Kumar Maharana

    (Department of Aeronautical Engineering, Acharya Institute of Technology, Bangalore 560107, Karnataka, India)

  • Thejaraju Rajashekaraiah

    (Department of Mechanical and Automobile Engineering, School of Engineering and Technology, CHRIST (Deemed to Be University), Bangalore 560029, Karnataka, India)

  • Ravichandran Gopalashetty

    (Department of Mechanical and Automobile Engineering, School of Engineering and Technology, CHRIST (Deemed to Be University), Bangalore 560029, Karnataka, India)

  • Mohsen Sharifpur

    (Department of Mechanical and Aeronautical Engineering, University of Pretoria, Hatfield 0028, South Africa
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan)

  • Mohammad Hossein Ahmadi

    (Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • C. Ahamed Saleel

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha 61421, Saudi Arabia)

  • Mohamed Abbas

    (Electrical Engineering Department, College of Engineering, King Khalid University, P.O. Box 394, Abha 61421, Saudi Arabia
    Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt)

Abstract

Engineering applications including food processing, wastewater treatment, home heating, commercial heating, and institutional heating successfully use unglazed transpired solar collectors (UTCs). Trapping of solar energy is the prime goal of developing an unglazed transpired solar collector. The UTC is usually developed in and around the walls of the building and absorbs the solar energy to heat the air. One of the key challenges faced by the UTC designer is the prediction of performance and its warranty under uncertain operating conditions of flow variables. Some of the flow features are the velocity distribution, plate temperature, exit temperature and perforation location. The objective of the present study was to establish correlations among these flow features and demonstrate a method of predicting the performance of the UTC. Hence, a correlation matrix was generated from the dataset prepared after solving the airflow over a perforated flat UTC. Further, both strong and weak correlations of flow features were captured through Pearson’s correlation coefficient. A comparison between the outcomes from a linear regression model and that of computational simulation was showcased. The performance probability for the UTC was interlinked with correlation matrix data. The Monte Carlo simulation was used to predict the performance from random values of the flow parameters. The study showed that the difference between the free stream value of temperature and the value of temperature inside the UTC’s chamber varied between 15 and 20 °C. The probability of achieving system efficiency greater than 35% was 55.2%. This has raised the hope of recommending the UTC for drying and heating where the required temperature differential is within 20 °C.

Suggested Citation

  • Sajna Parimita Panigrahi & Sarat Kumar Maharana & Thejaraju Rajashekaraiah & Ravichandran Gopalashetty & Mohsen Sharifpur & Mohammad Hossein Ahmadi & C. Ahamed Saleel & Mohamed Abbas, 2022. "Flat Unglazed Transpired Solar Collector: Performance Probability Prediction Approach Using Monte Carlo Simulation Technique," Energies, MDPI, vol. 15(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8843-:d:981805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Semenou & Daniel R. Rousse & Brice Le Lostec & Hervé F. Nouanegue & Pierre-Luc Paradis, 2015. "Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, July.
    2. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    3. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    4. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    5. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wongchai Anupong & Muhsin Jaber Jweeg & Sameer Alani & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Comparison of Wavelet Artificial Neural Network, Wavelet Support Vector Machine, and Adaptive Neuro-Fuzzy Inference System Methods in Estimating Total Solar Radiation in Iraq," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    2. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    3. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    4. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.
    5. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    6. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    7. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    8. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    9. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    11. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    13. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    14. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).
    15. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    16. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    17. Zhang, Tiantian & Yang, Hongxing, 2019. "Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes," Applied Energy, Elsevier, vol. 250(C), pages 834-845.
    18. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    19. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    20. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8843-:d:981805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.