IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8244-d963517.html
   My bibliography  Save this article

Stress and Displacement of Cylindrical Lithium-Ion Power Battery during Charging and Discharging

Author

Listed:
  • Jingyi Chen

    (Shanxi Key Laboratory of Material Strength and Structure Impact, Taiyuan 030024, China
    College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Genwei Wang

    (Shanxi Key Laboratory of Material Strength and Structure Impact, Taiyuan 030024, China
    College of Aeronautics and Astronautics, Taiyuan University of Technology, Jinzhong 030600, China)

  • Hui Song

    (Shanxi Key Laboratory of Material Strength and Structure Impact, Taiyuan 030024, China
    College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Bin Wang

    (Department of Mechanical and Aerospace Engineering, Brunel University London, London UB8 3PH, UK)

  • Guiying Wu

    (Shanxi Key Laboratory of Material Strength and Structure Impact, Taiyuan 030024, China
    College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jianyin Lei

    (Shanxi Key Laboratory of Material Strength and Structure Impact, Taiyuan 030024, China
    College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

During the charging and discharging process of a lithium-ion power battery, the intercalation and deintercalation of lithium-ion can cause volume change in the jellyroll and internal stress change in batteries as well, which may lead to battery failures and safety issues. A mathematical model based on a plane strain hypothesis was established to predict stresses in both the radial and hoop directions, with the hoop stress of each winding layer of the jellyroll obtained. Displacements of the steel case, the jellyroll, and the core of the battery during the charging and discharging processes were also analyzed, with the effect of lithium-ion concentration and the battery size discussed. The research results can explain well the wrinkling and fracture of the jellyroll.

Suggested Citation

  • Jingyi Chen & Genwei Wang & Hui Song & Bin Wang & Guiying Wu & Jianyin Lei, 2022. "Stress and Displacement of Cylindrical Lithium-Ion Power Battery during Charging and Discharging," Energies, MDPI, vol. 15(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8244-:d:963517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    2. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    3. Golriz Kermani & Elham Sahraei, 2017. "Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries," Energies, MDPI, vol. 10(11), pages 1-25, October.
    4. Lisa K. Willenberg & Philipp Dechent & Georg Fuchs & Dirk Uwe Sauer & Egbert Figgemeier, 2020. "High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genwei Wang & Xuanfu Guo & Jingyi Chen & Pengfei Han & Qiliang Su & Meiqing Guo & Bin Wang & Hui Song, 2023. "Safety Performance and Failure Criteria of Lithium-Ion Batteries under Mechanical Abuse," Energies, MDPI, vol. 16(17), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenwei, Wang & Yiding, Li & Cheng, Lin & Yuefeng, Su & Sheng, Yang, 2019. "State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    3. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    4. Genwei Wang & Xuanfu Guo & Jingyi Chen & Pengfei Han & Qiliang Su & Meiqing Guo & Bin Wang & Hui Song, 2023. "Safety Performance and Failure Criteria of Lithium-Ion Batteries under Mechanical Abuse," Energies, MDPI, vol. 16(17), pages 1-25, September.
    5. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Pan, Yongjun & Zhang, Xiaoxi & Liu, Yue & Wang, Huacui & Cao, Yangzheng & Liu, Xin & Liu, Binghe, 2022. "Dynamic behavior prediction of modules in crushing via FEA-DNN technique for durable battery-pack system design," Applied Energy, Elsevier, vol. 322(C).
    8. Qingxia Yang & Jun Xu & Binggang Cao & Xiuqing Li, 2017. "A simplified fractional order impedance model and parameter identification method for lithium-ion batteries," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    9. Li, Honggang & Zhou, Dian & Zhang, Meihe & Liu, Binghe & Zhang, Chao, 2023. "Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse," Energy, Elsevier, vol. 263(PE).
    10. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    11. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    12. Feng Zhu & Runzhou Zhou & David J. Sypeck, 2020. "Numerical Modeling and Safety Design for Lithium-Ion Vehicle Battery Modules Subject to Crush Loading," Energies, MDPI, vol. 14(1), pages 1-24, December.
    13. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    14. Golriz Kermani & Elham Sahraei, 2017. "Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries," Energies, MDPI, vol. 10(11), pages 1-25, October.
    15. Zhijie Li & Jiqing Chen & Fengchong Lan & Yigang Li, 2021. "Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading," Energies, MDPI, vol. 14(5), pages 1-22, February.
    16. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    17. Dafen Chen & Jiuchun Jiang & Xue Li & Zhanguo Wang & Weige Zhang, 2016. "Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis," Energies, MDPI, vol. 9(11), pages 1-18, October.
    18. Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.
    19. Dongchen Qin & Peizhuo Wang & Tingting Wang & Jiangyi Chen, 2023. "Modeling and Dynamic Impact Analysis of Prismatic Lithium-Ion Battery," Sustainability, MDPI, vol. 15(10), pages 1-12, May.
    20. Ye Sol Lim & Hyun-Ah Jung & Haejin Hwang, 2018. "Fabrication of PEO-PMMA-LiClO 4 -Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries," Energies, MDPI, vol. 11(10), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8244-:d:963517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.