IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7974-d954782.html
   My bibliography  Save this article

Machine-Learning-Based Modeling of a Hydraulic Speed Governor for Anomaly Detection in Hydropower Plants

Author

Listed:
  • Mehmet Akif Bütüner

    (TUBITAK MRC Energy Technologies, METU Campus, Ankara 06531, Turkey)

  • İlhan Koşalay

    (Department of Electrical-Electronics Engineering, Ankara University, Ankara 06830, Turkey)

  • Doğan Gezer

    (TUBITAK MRC Energy Technologies, METU Campus, Ankara 06531, Turkey)

Abstract

Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. The control systems are responsible for stopping the relevant unit safely in case of any malfunction while ensuring the desired operating point. Conventional control systems detect anomalies at certain limits or predefined threshold values by evaluating analog signals regardless of differences caused by operating conditions. In this study, using real data from a large hydro unit (>150 MW), a normal behavior model of a hydraulic governor’s oil circulation in an operational HEPP is created using several machine learning methods and historical data obtained from the HEPP’s SCADA system. Model outputs resulted in up to 96.45% success of prediction with less than 1% absolute deviation from actual measurements and an R 2 score of 0.985 with the random forest regression method. This novel approach makes the model outputs far more appropriate to use as an active threshold value changing for different operating conditions, eliminating insufficiency of the constant threshold, resulting in the detection of anomalies in early stages and taking precautions accordingly. The study fills the gap in the literature on anomaly detection in hydraulic power units, which is a demanding task with state-of-the-art methods.

Suggested Citation

  • Mehmet Akif Bütüner & İlhan Koşalay & Doğan Gezer, 2022. "Machine-Learning-Based Modeling of a Hydraulic Speed Governor for Anomaly Detection in Hydropower Plants," Energies, MDPI, vol. 15(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7974-:d:954782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doğan Gezer & Yiğit Taşcıoğlu & Kutay Çelebioğlu, 2021. "Frequency Containment Control of Hydropower Plants Using Different Adaptive Methods," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Hundi, Prabhas & Shahsavari, Rouzbeh, 2020. "Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants," Applied Energy, Elsevier, vol. 265(C).
    3. Cui, Bodi & Weng, Yang & Zhang, Ning, 2022. "A feature extraction and machine learning framework for bearing fault diagnosis," Renewable Energy, Elsevier, vol. 191(C), pages 987-997.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    2. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Lundström & Mattias O’Nils, 2023. "Factory-Based Vibration Data for Bearing-Fault Detection," Data, MDPI, vol. 8(7), pages 1-9, June.
    2. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    3. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    4. Asif Afzal & Saad Alshahrani & Abdulrahman Alrobaian & Abdulrajak Buradi & Sher Afghan Khan, 2021. "Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms," Energies, MDPI, vol. 14(21), pages 1-22, November.
    5. Tang, Yaochi & Chang, Yunchi & Li, Kuohao, 2023. "Applications of K-nearest neighbor algorithm in intelligent diagnosis of wind turbine blades damage," Renewable Energy, Elsevier, vol. 212(C), pages 855-864.
    6. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    7. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    8. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    9. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
    10. Salman Khalid & Jinwoo Song & Izaz Raouf & Heung Soo Kim, 2023. "Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques," Mathematics, MDPI, vol. 11(8), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7974-:d:954782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.