IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7209-d930522.html
   My bibliography  Save this article

A First Step towards Zero Nuclear Waste—Advanced Strategic Thinking in Light of iMAGINE

Author

Listed:
  • Bruno Merk

    (School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK)

  • Anna Detkina

    (School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK)

  • Dzianis Litskevich

    (School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK)

  • Maulik Patel

    (School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK)

  • Omid Noori-kalkhoran

    (School of Engineering, The University of Liverpool, Liverpool L69 3GH, UK)

  • Gregory Cartland-Glover

    (STFC Daresbury Laboratory, Daresbury WA4 4AD, UK)

  • Olga Efremova

    (Independent Researcher, Runcorn WA7 1QA, UK)

  • Mark Bankhead

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Claude Degueldre

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

Traditionally, there has been a gap between reactor operation and the consideration of nuclear waste in the final disposal. Fuel is produced, and fuel must be disposed. In the view of the reactor operator, fuel has to be cleaned in the reprocessing, and new solid fuel has to be produced in the view of the chemist. iMAGINE is designed to overcome this separation through a breakthrough development applying an optimized, integrative approach from cradle to grave of nuclear energy production as a first step to come as close as possible to the vision of zero waste nuclear power. It is described here for the first time in three steps: reactor, fuel cycle, and waste, providing the rationality behind each of the choices made to come to the overall solution to open the discussion and thinking process on what could be achieved by a very innovative approach to integrated nuclear energy production. The opportunities regarding the handling of the remaining waste are discussed with a view on the expectation of the final disposal community, the study “Nuclear waste from small modular reactors”, and the IAEA report “waste from innovative types of reactors and fuel cycles—a preliminary study”. The aim of this work is not to find answers to each of the raised points, but to identify potential approaches and promising ways to go, as well as to stimulate a discussion among experts. In the best case, this could lead to a change of track for nuclear power to become even more sustainable and an important, trusted technology to help solve the net-zero challenge.

Suggested Citation

  • Bruno Merk & Anna Detkina & Dzianis Litskevich & Maulik Patel & Omid Noori-kalkhoran & Gregory Cartland-Glover & Olga Efremova & Mark Bankhead & Claude Degueldre, 2022. "A First Step towards Zero Nuclear Waste—Advanced Strategic Thinking in Light of iMAGINE," Energies, MDPI, vol. 15(19), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7209-:d:930522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merk, Bruno & Stanculescu, Alexander & Chellapandi, Perumal & Hill, Robert, 2015. "Progress in reliability of fast reactor operation and new trends to increased inherent safety," Applied Energy, Elsevier, vol. 147(C), pages 104-116.
    2. Hamid Aït Abderrahim & Michel Giot, 2021. "The Accelerator Driven Systems, a 21st Century Option for Closing Nuclear Fuel Cycles and Transmuting Minor Actinides," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    3. Poinssot, Ch. & Bourg, S. & Ouvrier, N. & Combernoux, N. & Rostaing, C. & Vargas-Gonzalez, M. & Bruno, J., 2014. "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles," Energy, Elsevier, vol. 69(C), pages 199-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Merk & Anna Detkina & Dzianis Litskevich & Omid Noori-kalkhoran & Lakshay Jain & Gregory Cartland-Glover, 2022. "A HELIOS-Based Dynamic Salt Clean-Up Study Analysing the Effects of a Plutonium-Based Initial Core for iMAGINE," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Bruno Merk & Dzianis Litskevich & Anna Detkina & Omid Noori-kalkhoran & Lakshay Jain & Elfriede Derrer-Merk & Daliya Aflyatunova & Greg Cartland-Glover, 2023. "iMAGINE—Visions, Missions, and Steps for Successfully Delivering the Nuclear System of the 21st Century," Energies, MDPI, vol. 16(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Merk & Dzianis Litskevich & Anna Detkina & Omid Noori-kalkhoran & Lakshay Jain & Elfriede Derrer-Merk & Daliya Aflyatunova & Greg Cartland-Glover, 2023. "iMAGINE—Visions, Missions, and Steps for Successfully Delivering the Nuclear System of the 21st Century," Energies, MDPI, vol. 16(7), pages 1-16, March.
    2. Bruno Merk & Dzianis Litskevich & Karl R. Whittle & Mark Bankhead & Richard J. Taylor & Dan Mathers, 2017. "On a Long Term Strategy for the Success of Nuclear Power," Energies, MDPI, vol. 10(7), pages 1-21, June.
    3. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems," Energies, MDPI, vol. 9(11), pages 1-13, October.
    4. Adeline Cortesi & Laure Dijoux & Gwenola Yannou-Le Bris & Caroline Pénicaud, 2022. "Explaining the Differences between the Environmental Impacts of 44 French Artisanal Cheeses," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    5. Aiden Peakman & Bruno Merk, 2019. "The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands," Energies, MDPI, vol. 12(19), pages 1-16, September.
    6. Wuseong You & Ser Gi Hong, 2017. "An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    7. Zhongwen Pan & Zhigang Wang & Xiaoxiang Li & Jingrong Li & Yujiao Zhou, 2022. "Space-Time Pattern of Coupling Coordination between Environmental Regulation and Green Water Resource Efficiency in China," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    8. Rigby, Aidan & Lindley, Ben & Cullen, Jonathan, 2023. "An exergy based assessment of the efficiency of nuclear fuel cycles," Energy, Elsevier, vol. 264(C).
    9. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2015. "Environmental impact assessment of a solid-oxide fuel-cell-based combined-heat-and-power-generation system," Energy, Elsevier, vol. 79(C), pages 455-466.
    10. Miller, Lindsay & Carriveau, Rupp, 2017. "Balancing the carbon and water footprints of the Ontario energy mix," Energy, Elsevier, vol. 125(C), pages 562-568.
    11. Bohdanowicz, Zbigniew & Łopaciuk-Gonczaryk, Beata & Gajda, Paweł & Rajewski, Adam, 2023. "Support for nuclear power and proenvironmental attitudes: The cases of Germany and Poland," Energy Policy, Elsevier, vol. 177(C).
    12. Juliette Huguet & Christophe Chassard & René Lavigne & Françoise Irlinger & Isabelle Souchon & Stephan Marette & Anne Saint-Eve & Caroline Pénicaud, 2023. "Environmental performance of mixed animal and plant protein sources for designing new fermented foods," Post-Print hal-04132788, HAL.
    13. Jérôme Serp & Christophe Poinssot & Stéphane Bourg, 2017. "Assessment of the Anticipated Environmental Footprint of Future Nuclear Energy Systems. Evidence of the Beneficial Effect of Extensive Recycling," Energies, MDPI, vol. 10(9), pages 1-19, September.
    14. Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
    15. Bruno Merk & Mark Bankhead & Dzianis Litskevich & Robert Gregg & Aiden Peakman & Craig Shearer, 2018. "On a Roadmap for Future Industrial Nuclear Reactor Core Simulation in the U.K. to Support the Nuclear Renaissance," Energies, MDPI, vol. 11(12), pages 1-18, December.
    16. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Bruno Merk & Anna Detkina & Dzianis Litskevich & Omid Noori-kalkhoran & Lakshay Jain & Gregory Cartland-Glover, 2022. "A HELIOS-Based Dynamic Salt Clean-Up Study Analysing the Effects of a Plutonium-Based Initial Core for iMAGINE," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. Mohan, Aniruddh, 2017. "Whose land is it anyway? Energy futures & land use in India," Energy Policy, Elsevier, vol. 110(C), pages 257-262.
    19. Federica Cucchiella & Alessia Condemi & Marianna Rotilio & Valeria Annibaldi, 2021. "Energy Transitions in Western European Countries: Regulation Comparative Analysis," Energies, MDPI, vol. 14(13), pages 1-23, July.
    20. Frederik Reitsma & Peter Woods & Martin Fairclough & Yongjin Kim & Harikrishnan Tulsidas & Luis Lopez & Yanhua Zheng & Ahmed Hussein & Gerd Brinkmann & Nils Haneklaus & Anand Rao Kacham & Tumuluri Sre, 2018. "On the Sustainability and Progress of Energy Neutral Mineral Processing," Sustainability, MDPI, vol. 10(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7209-:d:930522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.