IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3664-d270575.html
   My bibliography  Save this article

The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands

Author

Listed:
  • Aiden Peakman

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Bruno Merk

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK
    School of Engineering, University of Liverpool, Liverpool L69 3GH, UK)

Abstract

There is growing interest in the use of advanced reactor systems for powering industrial processes which could significantly help to reduce CO 2 emissions in the global energy system. However, there has been limited consideration into the role nuclear power would play in meeting current and future industry heat demand, especially with respect to the advantages and disadvantages nuclear power offers relative to other competing low-carbon technologies, such as Carbon Capture and Storage (CCS). In this study, the current market needs for high temperature heat are considered based on UK industry requirements and work carried out in other studies regarding how industrial demand could change in the future. How these heat demands could be met via different nuclear reactor systems is also presented. Using this information, it was found that the industrial heat demands for temperature in the range of 500 ∘ C to 1000 ∘ C are relatively low. Whilst High Temperature Gas-cooled Reactors (HTGRs), Very High Temperature Reactors (VHTRs), Gas-cooled Fast Reactors (GFRs) and Molten Salt Reactors (MSRs) have an advantage in terms of capability to achieve higher temperatures (>500 ∘ C), their relative benefit over Liquid Metal-cooled Fast Reactors (LMFRs) and Light Water Reactors (LWRs) is actually smaller than previous studies indicate. This is because, as is shown here, major parts of the heat demand could be served by almost all reactor types. Alternative (non-nuclear) means to meet industrial heat demands and the indirect application of nuclear power, in particular via producing hydrogen, are also considered. As hydrogen is a relatively poor energy carrier, current trends indicate that the use of low-carbon derived hydrogen is likely to be limited to certain applications and there is a focus in this study on the emerging demands for hydrogen.

Suggested Citation

  • Aiden Peakman & Bruno Merk, 2019. "The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands," Energies, MDPI, vol. 12(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3664-:d:270575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merk, Bruno & Stanculescu, Alexander & Chellapandi, Perumal & Hill, Robert, 2015. "Progress in reliability of fast reactor operation and new trends to increased inherent safety," Applied Energy, Elsevier, vol. 147(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiden Peakman & Robert Gregg, 2020. "The Fuel Cycle Implications of Nuclear Process Heat," Energies, MDPI, vol. 13(22), pages 1-19, November.
    2. Umberto Lucia & Giulia Grisolia, 2024. "Energy Amplifier Systems as Sustainable Nuclear Reactors: An Overview," Sustainability, MDPI, vol. 16(7), pages 1-14, March.
    3. Pablo Fernández-Arias & Diego Vergara & Álvaro Antón-Sancho, 2023. "Bibliometric Review and Technical Summary of PWR Small Modular Reactors," Energies, MDPI, vol. 16(13), pages 1-15, July.
    4. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    5. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wuseong You & Ser Gi Hong, 2017. "An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    2. Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
    3. Bruno Merk & Mark Bankhead & Dzianis Litskevich & Robert Gregg & Aiden Peakman & Craig Shearer, 2018. "On a Roadmap for Future Industrial Nuclear Reactor Core Simulation in the U.K. to Support the Nuclear Renaissance," Energies, MDPI, vol. 11(12), pages 1-18, December.
    4. Bruno Merk & Dzianis Litskevich & Anna Detkina & Omid Noori-kalkhoran & Lakshay Jain & Elfriede Derrer-Merk & Daliya Aflyatunova & Greg Cartland-Glover, 2023. "iMAGINE—Visions, Missions, and Steps for Successfully Delivering the Nuclear System of the 21st Century," Energies, MDPI, vol. 16(7), pages 1-16, March.
    5. Bruno Merk & Anna Detkina & Dzianis Litskevich & Omid Noori-kalkhoran & Lakshay Jain & Gregory Cartland-Glover, 2022. "A HELIOS-Based Dynamic Salt Clean-Up Study Analysing the Effects of a Plutonium-Based Initial Core for iMAGINE," Energies, MDPI, vol. 15(24), pages 1-17, December.
    6. Bruno Merk & Dzianis Litskevich & Karl R. Whittle & Mark Bankhead & Richard J. Taylor & Dan Mathers, 2017. "On a Long Term Strategy for the Success of Nuclear Power," Energies, MDPI, vol. 10(7), pages 1-21, June.
    7. Bruno Merk & Anna Detkina & Dzianis Litskevich & Maulik Patel & Omid Noori-kalkhoran & Gregory Cartland-Glover & Olga Efremova & Mark Bankhead & Claude Degueldre, 2022. "A First Step towards Zero Nuclear Waste—Advanced Strategic Thinking in Light of iMAGINE," Energies, MDPI, vol. 15(19), pages 1-21, September.
    8. Bruno Merk & Anna Detkina & Dzianis Litskevich & Seddon Atkinson & Gregory Cartland-Glover, 2020. "The Interplay between Breeding and Thermal Feedback in a Molten Chlorine Fast Reactor," Energies, MDPI, vol. 13(7), pages 1-15, April.
    9. Bruno Merk & Anna Detkina & Seddon Atkinson & Dzianis Litskevich & Gregory Cartland-Glover, 2019. "Evaluation of the Breeding Performance of a NaCl-UCl-Based Reactor System," Energies, MDPI, vol. 12(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3664-:d:270575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.