IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6917-d921150.html
   My bibliography  Save this article

Fusion of Vermicompost and Sewage Sludge as Dark Fermentative Biocatalyst for Biohydrogen Production: A Kinetic Study

Author

Listed:
  • Balakumar Karthikeyan

    (School of Civil Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Velvizhi Gokuladoss

    (CO 2 Research and Green Technology Centre, Vellore Institute of Technology, Vellore 632014, India)

Abstract

The present study explores the synergy between vermicompost and the anaerobic sewage sludge as inoculum for biohydrogen production using food waste as a substrate. Experiments were designed and performed in two phases of operation. In the first phase, the vermicompost (VC) was used as inoculum and food waste as substrate at three different organic loading rates of 10 gVS/L (VC1), 20 gVS/L (VC2), and 30 gVS/L (VC3). In the second phase of operation, the inoculums were combined with a proportion of 50% (VC+AS). The study showed an effective biohydrogen production of 20 gVS/L when the mixing ratio of vermicompost and anaerobic sludge was 50:50. The results inferred that effective synergy was observed between the combined consortia of the inoculum, which induces a more effective metabolic pathway for enhanced hydrogen production. H 2 production was 33 mL/gVS (VC1), 48 mL/gVS (VC2), 35 mL/gVS (VC3), 46 mL/gVS (AS), and 50 mL/gVS (VC+AS). Heat pretreatment (100–120 °C) of the inoculum suppresses the methane-producing microorganisms and increases the hydrogen-producing microbes. In addition to hydrogen production, different metabolites are formed in the liquid phase, such as acetic acid, butyric acid, and propionic acid of 2.957 g/L, 4.286 g/L, and 2.123 g/L, respectively, with an energy content of 257 J/day with VC+AS. In addition, a kinetic model was studied for the cumulative hydrogen production curves using the modified Gompertz model, and the fit infers that the experimental data fitted well, with high coefficients of determination for VC+AS (R 2 (G) > 0.99).

Suggested Citation

  • Balakumar Karthikeyan & Velvizhi Gokuladoss, 2022. "Fusion of Vermicompost and Sewage Sludge as Dark Fermentative Biocatalyst for Biohydrogen Production: A Kinetic Study," Energies, MDPI, vol. 15(19), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6917-:d:921150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    3. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    4. Rajiv K. Sinha & Sunil Herat & Sunita Agarwal & Ravi Asadi & Emilio Carretero, 2002. "Vermiculture and waste management: study of action of earthworms Elsinia foetida, Eudrilus euginae and Perionyx excavatus on biodegradation of some community wastes in India and Australia," Environment Systems and Decisions, Springer, vol. 22(3), pages 261-268, September.
    5. Liana Vanyan & Adam Cenian & Karen Trchounian, 2022. "Biogas and Biohydrogen Production Using Spent Coffee Grounds and Alcohol Production Waste," Energies, MDPI, vol. 15(16), pages 1-11, August.
    6. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Progress and Challenges in Biohydrogen Production," Energies, MDPI, vol. 15(15), pages 1-3, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    2. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    2. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    3. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    5. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    6. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    7. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    8. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    9. Pan, Guangsheng & Gu, Wei & Chen, Sheng & Lu, Yuping & Zhou, Suyang & Wei, Zhinong, 2021. "Investment equilibrium of an integrated multi–stakeholder electricity–gas–hydrogen system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Lucas Bretschger & Karen Pittel, 2020. "Twenty Key Challenges in Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 725-750, December.
    11. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Wilhelm Kuckshinrichs, 2021. "LCOE: A Useful and Valid Indicator—Replica to James Loewen and Adam Szymanski," Energies, MDPI, vol. 14(2), pages 1-8, January.
    13. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    14. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    15. Robert Grabarczyk & Krzysztof Urbaniec & Jacek Wernik & Marian Trafczynski, 2019. "Evaluation of the Two-Stage Fermentative Hydrogen Production from Sugar Beet Molasses," Energies, MDPI, vol. 12(21), pages 1-15, October.
    16. Superchi, Francesco & Mati, Alessandro & Carcasci, Carlo & Bianchini, Alessandro, 2023. "Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking," Applied Energy, Elsevier, vol. 342(C).
    17. George, Jan Frederick & Müller, Viktor Paul & Winkler, Jenny & Ragwitz, Mario, 2022. "Is blue hydrogen a bridging technology? - The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany," Energy Policy, Elsevier, vol. 167(C).
    18. Zhang, LiXia & Baloch, Zulfiqar Ali & Niu, Guangli, 2023. "Effects of COVID-19 on green bonds, renewable power stocks, and carbon markets: A dynamic spillover analysis," Renewable Energy, Elsevier, vol. 216(C).
    19. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6917-:d:921150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.