IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6796-d917291.html
   My bibliography  Save this article

Comparison of Impact on Turbine Shafts Torsional Behavior for Integration of Two Types of Wind Farm into a Series-Compensated Transmission System

Author

Listed:
  • Chi Hsiang Lin

    (Department of Electrical Engineering, National Taitung Junior College, No. 889, Jhengci N. Road, Taitung City 95045, Taiwan)

Abstract

Deep decarbonization is the goal of modern power systems, so it is inevitable that large-scale wind farms will be integrated into systems. This also gives rise to many problems, which have been studied in detail in the literature. However, these studies basically have two deficiencies. One is to assume that traditional generator units are fully loaded, and the other is not to compare the differences in the impact of different types of wind farm. This paper discusses these two points in detail. Taking a series-compensated transmission system as the research object, and assuming that the wind farm only replaces part of the power of the traditional generator unit in the transition period of energy conversion, the difference between the torsional vibration behaviors of the traditional unit caused by adopting different types of wind farm is discussed. The results of the study show that the impact of integration of the type 3 wind farm is dominated by the induction generator effect of doubly fed induction generator units. The penetration rate as low as 19% could cause instability. However, the paralleled metal-oxide varistor can effectively improve the stability. For the type 4 wind farm, the dominant factor turns out to be the de-rating operations of the steam turbine generator unit. The allowable penetration rate depends on the turbine damping. When the turbine damping is sufficient, the penetration rate can be as high as 87.5%. In conclusion, in order to integrate wind farms into a series compensated transmission system, one should not only focus on the compensation factor to avoid the sub-synchronous torsional vibrations, but also pay attention to the types of wind farm as well as the penetration rate. The findings can be used as the decision-making basis for the integration of wind farms during the energy transition period.

Suggested Citation

  • Chi Hsiang Lin, 2022. "Comparison of Impact on Turbine Shafts Torsional Behavior for Integration of Two Types of Wind Farm into a Series-Compensated Transmission System," Energies, MDPI, vol. 15(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6796-:d:917291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wuhui Chen & Zaixing Teng & Junhua Zhao & Jing Qiu, 2018. "Small-Signal Performance of Type 4 Wind Turbine Generator-Based Clusters in Power Systems," Energies, MDPI, vol. 11(6), pages 1-16, June.
    2. Dicorato, M. & Forte, G. & Trovato, M., 2012. "Wind farm stability analysis in the presence of variable-speed generators," Energy, Elsevier, vol. 39(1), pages 40-47.
    3. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongyi Liu & Chongru Liu & Gengyin Li & Yong Liu & Yilu Liu, 2015. "Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory," Energies, MDPI, vol. 8(12), pages 1-23, November.
    2. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    3. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    4. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    5. Ouhrouche, Mohand, 2009. "Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform," Renewable Energy, Elsevier, vol. 34(3), pages 801-806.
    6. Seixas, M. & Melício, R. & Mendes, V.M.F., 2014. "Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control," Energy, Elsevier, vol. 69(C), pages 357-369.
    7. Jafarian, M. & Ranjbar, A.M., 2013. "The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations," Renewable Energy, Elsevier, vol. 50(C), pages 780-785.
    8. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & Yuan, Haiwen & He, Benlin & Tang, Qunwei, 2018. "Film-type rain energy converters from conductive polymer/PtCo hybrids," Applied Energy, Elsevier, vol. 218(C), pages 317-324.
    9. Naemi, Mostafa & Brear, Michael J., 2020. "A hierarchical, physical and data-driven approach to wind farm modelling," Renewable Energy, Elsevier, vol. 162(C), pages 1195-1207.
    10. Zhou, Kun & Lin, Qizhao & Hu, Hongwei & Hu, Huiqing & Song, Lanbo, 2017. "The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere," Energy, Elsevier, vol. 136(C), pages 173-184.
    11. Liao, Rih-Neng & Chen, Tsai-Hsiang & Chang, Wei-Shiou, 2016. "Fast screening techniques and process for grid interconnection of wind-storage systems," Energy, Elsevier, vol. 115(P1), pages 770-780.
    12. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    13. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    14. Chatterjee, Arunava & Roy, Krishna & Chatterjee, Debashis, 2014. "A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator," Energy, Elsevier, vol. 74(C), pages 707-718.
    15. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    16. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    17. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    18. Al-Mansour, Fouad & Sucic, Boris & Pusnik, Matevz, 2014. "Challenges and prospects of electricity production from renewable energy sources in Slovenia," Energy, Elsevier, vol. 77(C), pages 73-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6796-:d:917291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.