IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5982-d891565.html
   My bibliography  Save this article

Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications

Author

Listed:
  • Timo Roeder

    (Deutsches Zentrum für Luft-und Raumfahrt (German Aerospace Center)—DLR, Institute of Future Fuels, Linder Höhe, 51147 Cologne, Germany
    Faculty of Mechanical Engineering, RWTH Aachen University, 52074 Aachen, Germany)

  • Kai Risthaus

    (Deutsches Zentrum für Luft-und Raumfahrt (German Aerospace Center)—DLR, Institute of Future Fuels, Linder Höhe, 51147 Cologne, Germany)

  • Nathalie Monnerie

    (Deutsches Zentrum für Luft-und Raumfahrt (German Aerospace Center)—DLR, Institute of Future Fuels, Linder Höhe, 51147 Cologne, Germany)

  • Christian Sattler

    (Deutsches Zentrum für Luft-und Raumfahrt (German Aerospace Center)—DLR, Institute of Future Fuels, Linder Höhe, 51147 Cologne, Germany
    Faculty of Mechanical Engineering, RWTH Aachen University, 52074 Aachen, Germany)

Abstract

Concentrated solar power is capable of providing high-temperature process streams to different applications. One promising application is the high-temperature electrolysis process demanding steam and air above 800 °C. To overcome the intermittence of solar energy, energy storage is required. Currently, thermal energy at such temperatures can be stored predominately as sensible heat in packed beds. However, such storage suffers from a loss of usable storage capacity after several cycles. To improve such storage, a one-dimensional packed bed thermal energy storage model using air as a heat transfer medium is set up and used to investigate and quantify the benefit of the incorporation of different thermochemical materials from the class of perovskites. Perovskites undergo a non-stoichiometric reaction extension which offers the utilization of thermochemical heat over a larger temperature range. Three different perovskites were considered: SrFeO 3 , CaMnO 3 and Ca 0.8 Sr 0.2 MnO 3 . In total, 15 vol% of sensible energy storage has been replaced by one perovskite and different positions of the reactive material are analyzed. The effect of reactive heat on storage performance and thermal degradation over 15 consecutive charging and discharging cycles is studied. Based on the selected variation and reactive material, storage capacity and useful energy capacity are increased. The partial replacement close to the cold inlet/outlet of the storage system can increase the overall storage capacity by 10.42%. To fully utilize the advantages of thermochemical material, suitable operation conditions and a fitting placement of the material are vital.

Suggested Citation

  • Timo Roeder & Kai Risthaus & Nathalie Monnerie & Christian Sattler, 2022. "Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications," Energies, MDPI, vol. 15(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5982-:d:891565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Rosenstiel & Nathalie Monnerie & Jürgen Dersch & Martin Roeb & Robert Pitz-Paal & Christian Sattler, 2021. "Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power Plants: A Modelling Approach for Cost Optimal System Design," Energies, MDPI, vol. 14(12), pages 1-22, June.
    2. Tescari, Stefania & Neumann, Nicole Carina & Sundarraj, Pradeepkumar & Moumin, Gkiokchan & Rincon Duarte, Juan Pablo & Linder, Marc & Roeb, Martin, 2022. "Storing solar energy in continuously moving redox particles – Experimental analysis of charging and discharging reactors," Applied Energy, Elsevier, vol. 308(C).
    3. Albrecht, Kevin J. & Jackson, Gregory S. & Braun, Robert J., 2016. "Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage," Applied Energy, Elsevier, vol. 165(C), pages 285-296.
    4. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    5. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    6. Lin, Meng & Reinhold, Jan & Monnerie, Nathalie & Haussener, Sophia, 2018. "Modeling and design guidelines for direct steam generation solar receivers," Applied Energy, Elsevier, vol. 216(C), pages 761-776.
    7. Sanz-Bermejo, Javier & Muñoz-Antón, Javier & Gonzalez-Aguilar, José & Romero, Manuel, 2014. "Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production," Applied Energy, Elsevier, vol. 131(C), pages 238-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    2. Vittorio Tola & Simone Arena & Mario Cascetta & Giorgio Cau, 2020. "Numerical Investigation on a Packed-Bed LHTES System Integrated into a Micro Electrical and Thermal Grid," Energies, MDPI, vol. 13(8), pages 1-15, April.
    3. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    4. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    5. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    6. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    7. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    8. Ströhle, S. & Haselbacher, A. & Jovanovic, Z.R. & Steinfeld, A., 2017. "Upgrading sensible-heat storage with a thermochemical storage section operated at variable pressure: An effective way toward active control of the heat-transfer fluid outflow temperature," Applied Energy, Elsevier, vol. 196(C), pages 51-61.
    9. Al-Azawii, Mohammad M.S. & Theade, Carter & Bueno, Pablo & Anderson, Ryan, 2019. "Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections," Applied Energy, Elsevier, vol. 249(C), pages 409-422.
    10. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    11. Davide Iaria & Xin Zhou & Jafar Al Zaili & Qiang Zhang & Gang Xiao & Abdulnaser Sayma, 2019. "Development of a Model for Performance Analysis of a Honeycomb Thermal Energy Storage for Solar Power Microturbine Applications," Energies, MDPI, vol. 12(20), pages 1-19, October.
    12. Selvan Bellan & Tatsuya Kodama & Nobuyuki Gokon & Koji Matsubara, 2022. "A review on high‐temperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    13. Sulzgruber, Verena & Wünsch, David & Haider, Markus & Walter, Heimo, 2020. "Numerical investigation on the flow behavior of a novel fluidization based particle thermal energy storage (FP-TES)," Energy, Elsevier, vol. 200(C).
    14. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    15. André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
    16. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.
    17. Cabeza, Luisa F. & Solé, Aran & Fontanet, Xavier & Barreneche, Camila & Jové, Aleix & Gallas, Manuel & Prieto, Cristina & Fernández, A. Inés, 2017. "Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept," Applied Energy, Elsevier, vol. 185(P1), pages 836-845.
    18. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).
    19. Laetitia Uwineza & Hyun-Goo Kim & Jan Kleissl & Chang Ki Kim, 2022. "Technical Control and Optimal Dispatch Strategy for a Hybrid Energy System," Energies, MDPI, vol. 15(8), pages 1-19, April.
    20. Jarosław Gryz & Krzysztof Król & Anna Witkowska & Mariusz Ruszel, 2021. "Mobile Nuclear-Hydrogen Synergy in NATO Operations," Energies, MDPI, vol. 14(23), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5982-:d:891565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.