IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5523-d875790.html
   My bibliography  Save this article

Experimental and Numerical Investigation of Rotor–Stator Interaction in a Large Prototype Pump–Turbine in Turbine Mode

Author

Listed:
  • Haixia Yang

    (Branch Company of Maintenance & Test, CSG Power Generation Co., Ltd., Guangzhou 511400, China)

  • Qilian He

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Xingxing Huang

    (S.C.I. Energy, Future Energy Research Institute, Seidengasse 17, 8706 Zurich, Switzerland)

  • Mengqi Yang

    (Branch Company of Maintenance & Test, CSG Power Generation Co., Ltd., Guangzhou 511400, China)

  • Huili Bi

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Zhengwei Wang

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

In recent years, large-capacity, high-head pump–turbine units have been developed for pumped storage power plants to effectively utilise water energy and store large amounts of electricity. Compared with the traditional Francis turbine unit, the radial distance between the trailing edge of the guide vanes and the leading edge of runner blades of high-head pump–turbine unit is smaller, so the rotor–stator interaction and the corresponding pressure fluctuations in the vaneless space of pumped storage units are more intense. The pressure fluctuations with high amplitudes and high frequencies induced by rotor–stator interaction (RSI) become the main hydraulic excitation source for the structures of the unit and may cause violent vibration and fatigue damage to structural components, and seriously affect the safe operation of the units. In this paper, the RSI of a high-head pump–turbine in turbine mode of operation is studied in detail by means of site measurement and full three-dimensional unsteady simulations. The results of RSI-induced pressure fluctuations in turbine mode are analysed experimentally and numerically. The accuracy of the numerical calculations is verified by comparing with the measured results, and the variation law of RSI is deeply analysed. The results show that the pressure fluctuations in the vaneless space are affected by the wake of the guide vane, the rotating excitation of the runner, the low-frequency excitation of the draft tube, and the asymmetric characteristics of the incoming flow of the spiral case, and shows significant differences in spatial position. The findings of the investigation are an important and valuable reference for the design and safe operation of the pumped storage power station. It is recommended to design the runner with inclined inlets to reduce the amplitudes of RSI-induced pressure fluctuations and to avoid operating the pump–turbine units under partial load for long periods of time to reduce the risk of pressure fluctuation induced severe vibration on the structures.

Suggested Citation

  • Haixia Yang & Qilian He & Xingxing Huang & Mengqi Yang & Huili Bi & Zhengwei Wang, 2022. "Experimental and Numerical Investigation of Rotor–Stator Interaction in a Large Prototype Pump–Turbine in Turbine Mode," Energies, MDPI, vol. 15(15), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5523-:d:875790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Li & Wei Tan & Jianshe Zhang & Ge Han & Yanfeng Zhang, 2022. "Unsteady Effects of Wake on Downstream Rotor at Low Reynolds Numbers," Energies, MDPI, vol. 15(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    2. Wei-Hua Hu & De-Hui Tang & Ming Wang & Jun-Le Liu & Zuo-Hua Li & Wei Lu & Jun Teng & Samir Said & Rolf. G. Rohrmann, 2020. "Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis," Energies, MDPI, vol. 13(3), pages 1-21, January.
    3. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
    5. Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Diana Maria Bucur & Michel Jose Cervantes, 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve," Energies, MDPI, vol. 15(11), pages 1-24, June.
    6. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2021. "Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment," Renewable Energy, Elsevier, vol. 172(C), pages 465-476.
    7. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    8. Buchao Xu & Weiqiang Zhao & Wenhua Lin & Zhongyu Mao & Ran Tao & Zhengwei Wang, 2022. "The Influence of Different Operating Conditions on the Support Bracket Stress in Pumped Storage Units," Energies, MDPI, vol. 15(6), pages 1-15, March.
    9. Dollon, Q. & Antoni, J. & Tahan, A. & Gagnon, M. & Monette, C., 2021. "Operational Modal Analysis of hydroelectric turbines using an order based likelihood approach," Renewable Energy, Elsevier, vol. 165(P1), pages 799-811.
    10. Arash Soltani Dehkharqani & Fredrik Engström & Jan-Olov Aidanpää & Michel J. Cervantes, 2019. "Experimental Investigation of a 10 MW Prototype Kaplan Turbine during Start-Up Operation," Energies, MDPI, vol. 12(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5523-:d:875790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.