IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5079-d860967.html
   My bibliography  Save this article

Modelling and Design of a Coils Structure for 100 kW Three-Phase Inductive Power Transfer System

Author

Listed:
  • Jacopo Colussi

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Roberto Re

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Paolo Guglielmi

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

This paper presents the modeling, the design and verification of a three-phase coil structure for high-power Wireless-Power-Transfer (WPT) in automotive applications. The system, a Three-Polar-Pad (TPP), with complex mechanical geometry, is analytically modeled with an equivalent simplified structure. Thanks to this simplification, a numerical design is performed to minimize cross-coupling effects among different phases of the same side (receiver or transmitter) maximizing the linkage flux receiver-to-transmitter and then the power transferred. The analytical model is then verified in a Finite-Element-Analysis (FEA) environment. A final design, comprehensive of the shielding, is proposed matching the preliminary design constraints. Hence, the preliminary model is verified by testing a prototype using a three-phase Silicon Carbide (SiC) inverter at the transmitter side. The capability of the system is demonstrated by transferring 100 kW with more than 94% DC-to-DC efficiency over a 50 mm air gap in perfectly aligned conditions.

Suggested Citation

  • Jacopo Colussi & Roberto Re & Paolo Guglielmi, 2022. "Modelling and Design of a Coils Structure for 100 kW Three-Phase Inductive Power Transfer System," Energies, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5079-:d:860967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuo Liu & Jianhui Su & Jidong Lai, 2019. "Accurate Expressions of Mutual Inductance and Their Calculation of Archimedean Spiral Coils," Energies, MDPI, vol. 12(10), pages 1-14, May.
    2. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    3. Jacopo Colussi & Alessandro La Ganga & Roberto Re & Paolo Guglielmi & Eric Armando, 2021. "100 kW Three-Phase Wireless Charger for EV: Experimental Validation Adopting Opposition Method," Energies, MDPI, vol. 14(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Yao Pei & Yann Le Bihan & Mohamed Bensetti & Lionel Pichon, 2021. "Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    3. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    4. Karim Kadem & Mohamed Bensetti & Yann Le Bihan & Eric Labouré & Mustapha Debbou, 2021. "Optimal Coupler Topology for Dynamic Wireless Power Transfer for Electric Vehicle," Energies, MDPI, vol. 14(13), pages 1-18, July.
    5. Adam Steckiewicz & Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2020. "Numerical and Circuit Modeling of the Low-Power Periodic WPT Systems," Energies, MDPI, vol. 13(10), pages 1-17, May.
    6. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    7. Jacek Maciej Stankiewicz & Adam Steckiewicz & Agnieszka Choroszucho, 2023. "Analysis of Simultaneous WPT in Ultra-Low-Power Systems with Multiple Resonating Planar Coils," Energies, MDPI, vol. 16(12), pages 1-17, June.
    8. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.
    9. Jacek Maciej Stankiewicz & Agnieszka Choroszucho & Adam Steckiewicz, 2021. "Estimation of the Maximum Efficiency and the Load Power in the Periodic WPT Systems Using Numerical and Circuit Models," Energies, MDPI, vol. 14(4), pages 1-20, February.
    10. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    11. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    13. Haiyue Wang & Lianwen Deng & Heng Luo & Junsa Du & Daohan Zhou & Shengxiang Huang, 2021. "Microwave Wireless Power Transfer System Based on a Frequency Reconfigurable Microstrip Patch Antenna Array," Energies, MDPI, vol. 14(2), pages 1-12, January.
    14. Mauro Parise & Fabrizio Loreto & Daniele Romano & Giulio Antonini & Jonas Ekman, 2021. "Accurate Computation of Mutual Inductance of Non Coaxial Pancake Coils," Energies, MDPI, vol. 14(16), pages 1-11, August.
    15. Yuan Li & Shumei Zhang & Ze Cheng, 2021. "Double-Coil Dynamic Shielding Technology for Wireless Power Transmission in Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5079-:d:860967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.