IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5040-d859668.html
   My bibliography  Save this article

Falling Film Flow and Heat Transfer of Cryogenic Liquid Oxygen on Different Structural Surfaces

Author

Listed:
  • Zhihua Wan

    (School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China)

  • Ping Wang

    (School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China)

  • Huanying Shen

    (Institute of Building Intelligence, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China)

  • Yanzhong Li

    (Institute of Refrigeration and Cryogenic Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The accurate prediction of the falling film characteristics of cryogenic liquids is necessary to ensure good evaporation performance, due to their special physical properties. In this study, the film flow and heat transfer characteristics on four different structures were investigated, and the performance of the cryogenic liquid oxygen was compared with other fluids with higher temperatures, which demonstrates the influence of structures and liquid mediums. The VOF model was used to capture the film surface in the simulation model. The results show that for the four structures, liquids with higher kinematic viscosity tend to have greater film thickness, and the sensible heat transfer coefficients are inversely related to the nominal thermal resistance of falling film flow. Both on the smooth plate and the corrugated plate, the film wettability depends on the kinematic viscosity, rather than the dynamic viscosity, and the effect of kinematic viscosity is greater than that of surface tension. Both the local heat transfer coefficient and its fluctuation amplitude decrease gradually along the flow direction on the triangular corrugated plate, and the vortices are easier to produce at the wall troughs when the film viscosity is higher. At the bottom of the horizontal tube, the increases in local film thickness of the liquid oxygen are less than those of the water and the seawater. More liquid tends to accumulate at the bottom of the round tube, while it easily detaches from the film surface of the elliptical tube. For the horizontal tubes, the local heat transfer coefficients decrease rapidly when θ = 0–5°, and increase sharply at θ = 175–180°.

Suggested Citation

  • Zhihua Wan & Ping Wang & Huanying Shen & Yanzhong Li, 2022. "Falling Film Flow and Heat Transfer of Cryogenic Liquid Oxygen on Different Structural Surfaces," Energies, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5040-:d:859668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Furqan Tahir & Abdelnasser Mabrouk & Muammer Koç, 2020. "CFD Analysis of Falling Film Hydrodynamics for a Lithium Bromide (LiBr) Solution over a Horizontal Tube," Energies, MDPI, vol. 13(2), pages 1-15, January.
    2. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    3. María E. Álvarez & Mahmoud Bourouis, 2021. "Modelling of Coupled Heat and Mass Transfer in a Water-Cooled Falling-Film Absorber Working with an Aqueous Alkaline Nitrate Solution," Energies, MDPI, vol. 14(7), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkader Mahammedi & Naas Toufik Tayeb & Kouider Rahmani & Awf Al-Kassir & Eduardo Manuel Cuerda-Correa, 2023. "Exploring the Bioenergy Potential of Microfluidics: The Case of a T-Micromixer with Helical Elements for Sustainable Energy Solutions," Energies, MDPI, vol. 16(20), pages 1-18, October.
    2. Yanmei Cao & Yu Wang & Yang Gao & Risto Kosonen, 2022. "Heat Transfer Study from a Salty Droplet Film on a Horizontal Tube in Mechanical Vapor Recompression Crystallization System," Energies, MDPI, vol. 15(14), pages 1-15, July.
    3. Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.
    4. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    5. José Estupiñán-Campos & William Quitiaquez & César Nieto-Londoño & Patricio Quitiaquez, 2024. "Numerical Simulation of the Heat Transfer Inside a Shell and Tube Heat Exchanger Considering Different Variations in the Geometric Parameters of the Design," Energies, MDPI, vol. 17(3), pages 1-17, January.
    6. Karolina Weremijewicz & Andrzej Gajewski, 2021. "Measurement Uncertainty Estimation for Laser Doppler Anemometer," Energies, MDPI, vol. 14(13), pages 1-11, June.
    7. Anirudh Kulkarni & Garima Mishra & Sridhar Palla & Potnuri Ramesh & Dadi Venkata Surya & Tanmay Basak, 2023. "Advances in Computational Fluid Dynamics Modeling for Biomass Pyrolysis: A Review," Energies, MDPI, vol. 16(23), pages 1-32, November.
    8. Battisti, Rodrigo & Galeazzi, Andrea & Prifti, Kristiano & Manenti, Flavio & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2021. "Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5040-:d:859668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.