IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4916-d856089.html
   My bibliography  Save this article

Optimal Allocation Method of Source and Storage Capacity of PV-Hydrogen Zero Carbon Emission Microgrid Considering the Usage Cost of Energy Storage Equipment

Author

Listed:
  • Hongshan Zhao

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Junyang Xu

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Kunyu Xu

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Jingjie Sun

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Yufeng Wang

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

Aiming to meet the low-carbon demands of power generation in the process of carbon peaking and carbon neutralization, this paper proposes an optimal PV-hydrogen zero carbon emission microgrid. The light–electricity–hydrogen coupling utilization mode is adopted. The hydrogen-based energy system replaces the carbon-based energy system to realize zero carbon emissions. Firstly, the mathematical models of photovoltaic, hydrogen and electric energy storage systems in a microgrid are built. Then, the optimal allocation model of the microgrid source storage capacity is established, and a scheduling strategy considering the minimum operational cost of energy storage equipment is proposed. The priority of equipment output is determined by comparing the operational costs of the hydrogen energy storage system and the electric energy storage system. Finally, the proposed scheme is compared with the scheduling scheme of the battery priority and the hydrogen energy system priority in an actual microgrid. It is verified that the scheme can ensure stable power-generating, zero carbon operation of a microgrid system while reducing the total annual power costs by 9.8% and 25.1%, respectively.

Suggested Citation

  • Hongshan Zhao & Junyang Xu & Kunyu Xu & Jingjie Sun & Yufeng Wang, 2022. "Optimal Allocation Method of Source and Storage Capacity of PV-Hydrogen Zero Carbon Emission Microgrid Considering the Usage Cost of Energy Storage Equipment," Energies, MDPI, vol. 15(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4916-:d:856089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Bei & Roche, Robin & Miraoui, Abdellatif, 2017. "Microgrid sizing with combined evolutionary algorithm and MILP unit commitment," Applied Energy, Elsevier, vol. 188(C), pages 547-562.
    2. Abo-Elyousr, Farag K. & Guerrero, Josep M. & Ramadan, Haitham S., 2021. "Prospective hydrogen-based microgrid systems for optimal leverage via metaheuristic approaches," Applied Energy, Elsevier, vol. 300(C).
    3. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    4. Zhang, Weiping & Maleki, Akbar & Rosen, Marc A. & Liu, Jingqing, 2018. "Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage," Energy, Elsevier, vol. 163(C), pages 191-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Liang & Bing Sun & Yuan Zeng & Leijiao Ge & Yunfei Li & Yu Wang, 2022. "An Optimal Allocation Method of Distributed PV and Energy Storage Considering Moderate Curtailment Measure," Energies, MDPI, vol. 15(20), pages 1-19, October.
    2. Ye Li & Shixuan Li & Shiyao Xia & Bojia Li & Xinyu Zhang & Boyuan Wang & Tianzhen Ye & Wandong Zheng, 2023. "A Review on the Policy, Technology and Evaluation Method of Low-Carbon Buildings and Communities," Energies, MDPI, vol. 16(4), pages 1-43, February.
    3. Shuang Lei & Yu He & Jing Zhang & Kun Deng, 2023. "Optimal Configuration of Hybrid Energy Storage Capacity in a Microgrid Based on Variational Mode Decomposition," Energies, MDPI, vol. 16(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    2. Mah, Angel Xin Yee & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Ling, Gabriel Hoh Teck & Ho, Chin Siong & Muis, Zarina Ab, 2021. "Optimization of a standalone photovoltaic-based microgrid with electrical and hydrogen loads," Energy, Elsevier, vol. 235(C).
    3. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    4. Fares, Dalila & Fathi, Mohamed & Mekhilef, Saad, 2022. "Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system," Applied Energy, Elsevier, vol. 305(C).
    5. Mohseni, Soheil & Khalid, Roomana & Brent, Alan C., 2023. "Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics," Applied Energy, Elsevier, vol. 341(C).
    6. Zhang, Ge & Shi, Yong & Maleki, Akbar & A. Rosen, Marc, 2020. "Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach," Renewable Energy, Elsevier, vol. 156(C), pages 1203-1214.
    7. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    8. Julia Schulz & Daniel Leinmüller & Adam Misik & Michael F. Zaeh, 2021. "Renewable On-Site Power Generation for Manufacturing Companies—Technologies, Modeling, and Dimensioning," Sustainability, MDPI, vol. 13(7), pages 1-27, April.
    9. He, Yi & Guo, Su & Dong, Peixin & Wang, Chen & Huang, Jing & Zhou, Jianxu, 2022. "Techno-economic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index," Applied Energy, Elsevier, vol. 328(C).
    10. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    11. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2020. "Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage," Energy, Elsevier, vol. 213(C).
    12. He, Yi & Guo, Su & Zhou, Jianxu & Song, Guotao & Kurban, Aynur & Wang, Haowei, 2022. "The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system," Energy, Elsevier, vol. 245(C).
    13. Yamamoto, Hiromi & Fujioka, Hanako & Okano, Kunihiko, 2021. "Cost analysis of stable electric and hydrogen energy supplies derived from 100% variable renewable resources systems," Renewable Energy, Elsevier, vol. 178(C), pages 1165-1173.
    14. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    15. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    16. khanmohammadi, Shoaib & Saadat-Targhi, Morteza, 2019. "Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery," Energy, Elsevier, vol. 171(C), pages 1066-1076.
    17. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    18. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    19. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    20. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4916-:d:856089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.