IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4787-d851825.html
   My bibliography  Save this article

Assessment of an Exhaust Thermoelectric Generator Incorporating Thermal Control Applied to a Heavy Duty Vehicle

Author

Listed:
  • Carolina Clasen Sousa

    (MEtRICs, Mechanical Engineering Department, Campus of Azurem, University of Minho, 4800-058 Guimaraes, Portugal)

  • Jorge Martins

    (MEtRICs, Mechanical Engineering Department, Campus of Azurem, University of Minho, 4800-058 Guimaraes, Portugal)

  • Óscar Carvalho

    (CMEMS, Mechanical Engineering Department, Campus of Azurem, University of Minho, 4800-058 Guimaraes, Portugal)

  • Miguel Coelho

    (CMEMS, Mechanical Engineering Department, Campus of Azurem, University of Minho, 4800-058 Guimaraes, Portugal)

  • Ana Sofia Moita

    (Instituto Universitário Militar—CINAMIL, Academia Militar, IN+ University of Lisbon, 1649-004 Lisboa, Portugal)

  • Francisco P. Brito

    (MEtRICs, Mechanical Engineering Department, Campus of Azurem, University of Minho, 4800-058 Guimaraes, Portugal
    TEMA, Mechanical Engineering Department, Campus of Santiago, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

The road transport industry faces the need to develop its fleet for lower energy consumption, pollutants and CO 2 emissions. Waste heat recovery systems with Thermoelectric Generators (TEGs) can directly convert the exhaust heat into electric energy, aiding the electrical needs of the vehicle, thus reducing its dependency on fuel energy. The present work assesses the optimisation and evaluation of a temperature-controlled thermoelectric generator (TCTG) concept to be used in a commercial heavy-duty vehicle (HDV). The system consists of a heat exchanger with wavy fins (WFs) embedded in an aluminium matrix along with vapour chambers (VCs), machined directly into the matrix, that grant the thermal control based on the spreading of local excess heat by phase change, as proposed by the authors in previous publications and patents. The TCTG concept behaviour was analysed under realistic driving conditions. An HDV with a 16 L Diesel engine was simulated in AVL Cruise to obtain the exhaust gas temperature and mass flow rate for each point of two cycle runs. A model proposed in previous publications was adapted to the new fin geometry and vapour chamber configuration and used the AVL Cruise data as input. It was possible to predict the thermal and thermoelectric performance of the TCTG along the corresponding driving cycles. The developed system proved to have a good capacity for applications with highly variable thermal loads since it was able to uncouple the maximisation of heat absorption from the regulation of the thermal level at the hot face of the TEG modules, avoiding both thermal dilution and overheating. This was achieved by the controlled phase change temperature of the heat spreader, that would ensure the spreading of the excess heat from overheated to underheated areas of the generator instead of wasting excess heat. A maximum average electrical production of 2.4 kW was predicted, which resulted in fuel savings of about 2% and CO 2 emissions reduction of around 37 g/km.

Suggested Citation

  • Carolina Clasen Sousa & Jorge Martins & Óscar Carvalho & Miguel Coelho & Ana Sofia Moita & Francisco P. Brito, 2022. "Assessment of an Exhaust Thermoelectric Generator Incorporating Thermal Control Applied to a Heavy Duty Vehicle," Energies, MDPI, vol. 15(13), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4787-:d:851825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    2. Pacheco, N. & Brito, F.P. & Vieira, R. & Martins, J. & Barbosa, H. & Goncalves, L.M., 2020. "Compact automotive thermoelectric generator with embedded heat pipes for thermal control," Energy, Elsevier, vol. 197(C).
    3. F. P. Brito & João Silva Peixoto & Jorge Martins & António P. Gonçalves & Loucas Louca & Nikolaos Vlachos & Theodora Kyratsi, 2021. "Analysis and Design of a Silicide-Tetrahedrite Thermoelectric Generator Concept Suitable for Large-Scale Industrial Waste Heat Recovery," Energies, MDPI, vol. 14(18), pages 1-21, September.
    4. Ana Sofia Moita & Pedro Pontes & Lourenço Martins & Miguel Coelho & Oscar Carvalho & F. P. Brito & António Luís N. Moreira, 2022. "Complex Fluid Flow in Microchannels and Heat Pipes with Enhanced Surfaces for Advanced Heat Conversion and Recovery Systems," Energies, MDPI, vol. 15(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Poure & Mashiul Huq, 2022. "Thermoelectric Generator for Waste Energy Recovery in Transport," Energies, MDPI, vol. 15(21), pages 1-2, October.
    2. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    3. Carvalho, Rui & Martins, Jorge & Pacheco, Nuno & Puga, Hélder & Costa, Joaquim & Vieira, Rui & Goncalves, L.M. & Brito, Francisco P., 2023. "Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Sofia Moita & Pedro Pontes & Lourenço Martins & Miguel Coelho & Oscar Carvalho & F. P. Brito & António Luís N. Moreira, 2022. "Complex Fluid Flow in Microchannels and Heat Pipes with Enhanced Surfaces for Advanced Heat Conversion and Recovery Systems," Energies, MDPI, vol. 15(4), pages 1-20, February.
    2. Carvalho, Rui & Martins, Jorge & Pacheco, Nuno & Puga, Hélder & Costa, Joaquim & Vieira, Rui & Goncalves, L.M. & Brito, Francisco P., 2023. "Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles," Energy, Elsevier, vol. 280(C).
    3. Carrilho-Nunes, Inês & Catalão-Lopes, Margarida, 2022. "The effects of environmental policy and technology transfer on GHG emissions: The case of Portugal," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 255-264.
    4. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    5. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    6. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    7. Tobias Eibinger & Hans Manner & Karl Steininger, 2024. "Shifting Gears? The Impact of Austria's Transport Policy Mix on CO2 Emissions from Passenger Cars," Graz Economics Papers 2024-10, University of Graz, Department of Economics.
    8. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    9. Hussain, Moon Moon & Pal, Shreya & Villanthenkodath, Muhammed Ashiq, 2023. "Towards sustainable development: The impact of transport infrastructure expenditure on the ecological footprint in India," Innovation and Green Development, Elsevier, vol. 2(2).
    10. Liu, Yang & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does energy aid mitigate the recipient countries’ carbon emissions?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 359-375.
    11. Chien‐Chiang Lee & Ying Yuan & Huwei Wen, 2022. "Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China," Natural Resources Forum, Blackwell Publishing, vol. 46(3), pages 289-310, August.
    12. Hamdy Ahmad Aly Alhendawy & Mohammed Galal Abdallah Mostafa & Mohamed Ibrahim Elgohari & Ibrahim Abdalla Abdelraouf Mohamed & Nabil Medhat Arafat Mahmoud & Mohamed Ahmed Mohamed Mater, 2023. "Determinants of Renewable Energy Production in Egypt New Approach: Machine Learning Algorithms," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 679-689, November.
    13. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.
    14. Xiaoyu Liu & Chong Zhao & Hao Guo & Zhongcheng Wang, 2022. "Performance Analysis of Ship Exhaust Gas Temperature Differential Power Generation," Energies, MDPI, vol. 15(11), pages 1-17, May.
    15. Bożena Gajdzik & Marcin Awdziej & Magdalena Jaciow & Ilona Lipowska & Marcin Lipowski & Grzegorz Szojda & Jolanta Tkaczyk & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2024. "Encouraging Residents to Save Energy by Using Smart Transportation: Incorporating the Propensity to Save Energy into the UTAUT Model," Energies, MDPI, vol. 17(21), pages 1-31, October.
    16. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    17. Lv, Zhike & Jiang, Fei & Xu, Ting, 2022. "Female parliamentarians and environment nexus: The neglected role of governance quality," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    18. Luo, Ding & Yan, Yuying & Li, Ying & Yang, Xuelin & Chen, Hao, 2023. "Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power," Energy, Elsevier, vol. 281(C).
    19. Deng, Jinchang & Zhou, Fubao & Shi, Bobo & Torero, José L. & Qi, Haining & Liu, Peng & Ge, Shaokun & Wang, Zhiyu & Chen, Chen, 2020. "Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China," Energy, Elsevier, vol. 207(C).
    20. Xingong Ding & Mengzhen Wang, 2024. "The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency," Energies, MDPI, vol. 17(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4787-:d:851825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.