IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4266-d835825.html
   My bibliography  Save this article

Applied Methodology for Designing and Calculating a Family of Spur Gear Pumps

Author

Listed:
  • Ionuţ Gabriel Ghionea

    (Manufacturing Engineering Department, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, Spl. Independenţei 313, 060042 Bucharest, Romania)

Abstract

The paper presents in an applicative manner a parameter-based methodology about design, modeling and optimization of a spur gear pump, currently under production in a Romanian company. Wanting to expand their product range, the company asked for a parameter-based design of this type of pump, FEM simulations and optimization of its conception to cover a wider range of flow rates, as required by current beneficiaries. The purpose of this research was to find improved alternative solutions via parametric design, mathematical validation and finite element simulation of the manufacturing solutions. The pump model is well known and has been manufactured for decades in many countries, under various licenses and constructive variants. The research process analyzed the functional role of the gear pump, its structure, its 3D model, which was reconstructed from the last manufactured solution, while identifying certain dimensions to be optimized and used in parametric design relations. The author used the CATIA V5 software and Visual Basic programing language. By mathematical computation, there were identified the pressure values and forces generated in the pump’s gears, applied later in FEM simulations to check the behavior of the pump components at the loads generated by these forces and pressures. The paper identifies and presents in a summary table the maximum stress values, deformations and percentages of computation errors for each pump’s constructive solution.

Suggested Citation

  • Ionuţ Gabriel Ghionea, 2022. "Applied Methodology for Designing and Calculating a Family of Spur Gear Pumps," Energies, MDPI, vol. 15(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4266-:d:835825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Rundo, 2017. "Models for Flow Rate Simulation in Gear Pumps: A Review," Energies, MDPI, vol. 10(9), pages 1-32, August.
    2. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Model of the Floating Bearing Bushing Movement in an External Gear Pump and the Relation to Its Parameterization," Energies, MDPI, vol. 14(24), pages 1-23, December.
    3. Sangbeom Woo & Andrea Vacca, 2022. "An Investigation of the Vibration Modes of an External Gear Pump through Experiments and Numerical Modeling," Energies, MDPI, vol. 15(3), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Javier Gamez-Montero & Ernest Bernat-Maso, 2022. "Taguchi Techniques as an Effective Simulation-Based Strategy in the Design of Numerical Simulations to Assess Contact Stress in Gerotor Pumps," Energies, MDPI, vol. 15(19), pages 1-24, September.
    2. Fábio Antônio do Nascimento Setúbal & Sérgio de Souza Custódio Filho & Newton Sure Soeiro & Alexandre Luiz Amarante Mesquita & Marcus Vinicius Alves Nunes, 2022. "Force Identification from Vibration Data by Response Surface and Random Forest Regression Algorithms," Energies, MDPI, vol. 15(10), pages 1-15, May.
    3. Barbara Zardin & Emiliano Natali & Massimo Borghi, 2019. "Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps," Energies, MDPI, vol. 12(13), pages 1-19, June.
    4. Pedro Javier Gamez-Montero & Esteve Codina & Robert Castilla, 2019. "A Review of Gerotor Technology in Hydraulic Machines," Energies, MDPI, vol. 12(12), pages 1-44, June.
    5. Massimo Rundo & Giorgio Altare & Paolo Casoli, 2019. "Simulation of the Filling Capability in Vane Pumps," Energies, MDPI, vol. 12(2), pages 1-18, January.
    6. Valeriy Sanchugov & Pavel Rekadze, 2022. "New Method to Determine the Dynamic Fluid Flow Rate at the Gear Pump Outlet," Energies, MDPI, vol. 15(9), pages 1-29, May.
    7. Gabriele Muzzioli & Luca Montorsi & Andrea Polito & Andrea Lucchi & Alessandro Sassi & Massimo Milani, 2021. "About the Influence of Eco-Friendly Fluids on the Performance of an External Gear Pump," Energies, MDPI, vol. 14(4), pages 1-26, February.
    8. Alessandro Corvaglia & Massimo Rundo & Paolo Casoli & Antonio Lettini, 2021. "Evaluation of Tooth Space Pressure and Incomplete Filling in External Gear Pumps by Means of Three-Dimensional CFD Simulations," Energies, MDPI, vol. 14(2), pages 1-16, January.
    9. Hirokami, Arata & Heshmat, Samia & Tomioka, Satoshi, 2021. "Accurate numerical method to solve flux distribution of Poisson’s equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 329-342.
    10. Gianluca Marinaro & Emma Frosina & Adolfo Senatore, 2021. "A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps," Energies, MDPI, vol. 14(2), pages 1-22, January.
    11. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump," Sustainability, MDPI, vol. 13(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4266-:d:835825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.