IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2491-d544328.html
   My bibliography  Save this article

Anaerobic Co-Digestion of Tannery and Slaughterhouse Wastewater for Solids Reduction and Resource Recovery: Effect of Sulfate Concentration and Inoculum to Substrate Ratio

Author

Listed:
  • Ashton B. Mpofu

    (Department of Chemical Engineering, Bellville Campus, Cape Peninsula University of Technology, Symphony Way, Cape Town 7535, South Africa
    Institute of Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa)

  • Victoria A. Kibangou

    (Department of Chemical Engineering, Bellville Campus, Cape Peninsula University of Technology, Symphony Way, Cape Town 7535, South Africa
    Institute of Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa)

  • Walusungu M. Kaira

    (Department of Chemical Engineering, Bellville Campus, Cape Peninsula University of Technology, Symphony Way, Cape Town 7535, South Africa
    Institute of Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa)

  • Oluwaseun O. Oyekola

    (Department of Chemical Engineering, Bellville Campus, Cape Peninsula University of Technology, Symphony Way, Cape Town 7535, South Africa)

  • Pamela J. Welz

    (Institute of Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa)

Abstract

Anaerobic digestion is considered unsuitable for the bioremediation of tannery effluent due to process inhibition, mainly due to high concentrations of sulfur species, and the accumulation of H 2 S and/or NH 3 . This study using the standardized biochemical methane potential protocol showed that efficient processing is possible with slaughterhouse wastewater, provided sufficient functional biomass is present at the start of the process and the SO 4 2 − concentration is below inhibition threshold. Methanogenic activity (K = 13.4–17.5 and µm = 0.15–0.27) and CH 4 yields were high when reactors were operated ISR ≥ 3 and/or lower SO 4 2 − ≤ 710 mg/L while high SO 4 2 − ≥ 1960 mg/L and ISR < 3.0 caused almost complete inhibition regardless of corresponding ISR and SO 4 2 − . The theoretical optimum operating conditions (922 mg/L SO 4 2 − , ISR = 3.72) are expected to generate 361 mL biogas/gVS, 235 mL CH 4 /gVS with reduction efficiencies of 27.5% VS, 27.4% TS, 75.1% TOC, 75.6% SO 4 2 − , and 41.1% COD. This implies that tannery sludge will be reduced by about 27% (dry mass) and SO 4 2 − by 76%, with a fraction of it recovered as S 0 . The models displayed a perfect fit to the cumulative CH 4 yields with high precision in the order Logistic > Cone > modified Gompertz > first order.

Suggested Citation

  • Ashton B. Mpofu & Victoria A. Kibangou & Walusungu M. Kaira & Oluwaseun O. Oyekola & Pamela J. Welz, 2021. "Anaerobic Co-Digestion of Tannery and Slaughterhouse Wastewater for Solids Reduction and Resource Recovery: Effect of Sulfate Concentration and Inoculum to Substrate Ratio," Energies, MDPI, vol. 14(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2491-:d:544328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young-Ju Song & Kyung-Su Oh & Beom Lee & Dae-Won Pak & Ji-Hwan Cha & Jun-Gyu Park, 2021. "Characteristics of Biogas Production from Organic Wastes Mixed at Optimal Ratios in an Anaerobic Co-Digestion Reactor," Energies, MDPI, vol. 14(20), pages 1-16, October.
    2. Marcin Dębowski & Marcin Zieliński, 2022. "Wastewater Treatment and Biogas Production: Innovative Technologies, Research and Development Directions," Energies, MDPI, vol. 15(6), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    2. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    3. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    4. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    6. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    7. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    8. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    9. Alessio Siciliano & Maria Assuntina Stillitano & Carlo Limonti, 2016. "Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H 2 O 2 with Lime and Anaerobic Digestion," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    10. Heerenklage, J. & Rechtenbach, D. & Atamaniuk, I. & Alassali, A. & Raga, R. & Koch, K. & Kuchta, K., 2019. "Development of a method to produce standardised and storable inocula for biomethane potential tests – Preliminary steps," Renewable Energy, Elsevier, vol. 143(C), pages 753-761.
    11. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    12. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    13. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    14. Ghanimeh, Sophia & Khalil, Charbel Abou & Stoecklein, Daniel & Kommasojula, Aditya & Ganapathysubramanian, Baskar, 2020. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste," Renewable Energy, Elsevier, vol. 154(C), pages 841-848.
    15. Tariq, Mohsin & Mehmood, Ayaz & Abbas, Yasir & Rukh, Shah & Shah, Fayyaz Ali & Hassan, Ahmed & Gurmani, Ali Raza & Ahmed, Zahoor & Yun, Sining, 2024. "Digestate quality and biogas enhancement with laterite mineral and biochar: Performance and mechanism in anaerobic digestion," Renewable Energy, Elsevier, vol. 220(C).
    16. Ahmad Dar, Rouf & Ahmad Dar, Eajaz & Kaur, Ajit & Gupta Phutela, Urmila, 2018. "Sweet sorghum-a promising alternative feedstock for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4070-4090.
    17. Lamis Yousra Shahrazed Khelifa Zouaghi & Hayet Djelal & Zineb Salem, 2021. "Anaerobic co-digestion of three organic wastes under mesophilic conditions: lab-scale and pilot-scale studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9014-9028, June.
    18. Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.
    19. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    20. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2491-:d:544328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.