IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2413-d542089.html
   My bibliography  Save this article

Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose

Author

Listed:
  • Jawairia Imtiaz Ahmad

    (Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands
    Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, H-12 Sector, Islamabad 44000, Pakistan)

  • Sara Giorgi

    (Waternet, Korte Ouderkerkerdijk 7, 1096 AC Amsterdam, The Netherlands)

  • Ljiljana Zlatanovic

    (Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands
    Water Supply Company Noord-Holland PWN, Rijksweg 501, 1991 AS Velserbroek, The Netherlands
    Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA Amsterdam, The Netherlands)

  • Gang Liu

    (Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands
    Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Jan Peter van der Hoek

    (Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands
    Waternet, Korte Ouderkerkerdijk 7, 1096 AC Amsterdam, The Netherlands
    Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA Amsterdam, The Netherlands)

Abstract

Drinking water distribution networks (DWDNs) have a huge potential for cold thermal energy recovery (TED). TED can provide cooling for buildings and spaces with high cooling requirements as an alternative for traditional cooling, reduce usage of electricity or fossil fuel, and thus TED helps reduce greenhouse gas (GHG) emissions. There is no research on the environmental assessment of TED systems, and no standards are available for the maximum temperature limit (T max ) after recovery of cold. During cold recovery, the water temperature increases, and water at the customer’s tap may be warmer as a result. Previous research showed that increasing T max up to 30 °C is safe in terms of microbiological risks. The present research was carried out to determine what raising T max would entail in terms of energy savings, GHG emission reduction and water temperature dynamics during transport. For this purpose, a full-scale TED system in Amsterdam was used as a benchmark, where T max is currently set at 15 °C. T max was theoretically set at 20, 25 and 30 °C to calculate energy savings and CO 2 emission reduction and for water temperature modeling during transport after cold recovery. Results showed that by raising T max from the current 15 °C to 20, 25 and 30 °C, the retrievable cooling energy and GHG emission reduction could be increased by 250, 425 and 600%, respectively. The drinking water temperature model predicted that within a distance of 4 km after TED, water temperature resembles that of the surrounding subsurface soil. Hence, a higher T max will substantially increase the TED potential of DWDN while keeping the same comfort level at the customer’s tap.

Suggested Citation

  • Jawairia Imtiaz Ahmad & Sara Giorgi & Ljiljana Zlatanovic & Gang Liu & Jan Peter van der Hoek, 2021. "Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose," Energies, MDPI, vol. 14(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2413-:d:542089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    2. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    3. Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    4. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method," Energies, MDPI, vol. 10(3), pages 1-15, February.
    5. Chen-Yu Chiang & Ru Yang & Kuan-Hsiung Yang, 2016. "The Development and Full-Scale Experimental Validation of an Optimal Water Treatment Solution in Improving Chiller Performances," Sustainability, MDPI, vol. 8(7), pages 1-21, June.
    6. van der Hoek, Jan Peter & Mol, Stefan & Giorgi, Sara & Ahmad, Jawairia Imtiaz & Liu, Gang & Medema, Gertjan, 2018. "Energy recovery from the water cycle: Thermal energy from drinking water," Energy, Elsevier, vol. 162(C), pages 977-987.
    7. Wen-Wei Li & Han-Qing Yu & Bruce E. Rittmann, 2015. "Chemistry: Reuse water pollutants," Nature, Nature, vol. 528(7580), pages 29-31, December.
    8. Guo, Xiaofeng & Hendel, Martin, 2018. "Urban water networks as an alternative source for district heating and emergency heat-wave cooling," Energy, Elsevier, vol. 145(C), pages 79-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hypolite, Gautier & Boutin, Olivier & Sole, Sandrine Del & Cloarec, Jean-François & Ferrasse, Jean-Henry, 2023. "Evaluation of a water network’s energy potential in dynamic operation," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hypolite, Gautier & Boutin, Olivier & Sole, Sandrine Del & Cloarec, Jean-François & Ferrasse, Jean-Henry, 2023. "Evaluation of a water network’s energy potential in dynamic operation," Energy, Elsevier, vol. 271(C).
    2. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
    3. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    4. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    5. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    6. Edris Yousefi Rad & Mohammad Reza Mahpeykar, 2017. "A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades," Energies, MDPI, vol. 10(9), pages 1-37, August.
    7. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    8. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    9. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    10. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    11. Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.
    12. Meesenburg, Wiebke & Ommen, Torben & Thorsen, Jan Eric & Elmegaard, Brian, 2020. "Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy," Energy, Elsevier, vol. 191(C).
    13. Daniele Cecconet & Jakub Raček & Arianna Callegari & Petr Hlavínek, 2019. "Energy Recovery from Wastewater: A Study on Heating and Cooling of a Multipurpose Building with Sewage-Reclaimed Heat Energy," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    14. Mohammed Issa Shahateet & Ghani Albaali & Abdul Ghafoor Saidi, 2021. "Energy and Environmental Analysis of Solar Air Cooling with 2-Stages Adsorption Chiller in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 16-26.
    15. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    16. Xiang Gao & Zhichao Yang & Wen Zhang & Bingcai Pan, 2024. "Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    20. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2413-:d:542089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.