IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p883-d495735.html
   My bibliography  Save this article

Robust Power Sharing and Voltage Stabilization Control Structure via Sliding-Mode Technique in Islanded Micro-Grid

Author

Listed:
  • Quan-Quan Zhang

    (Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

  • Rong-Jong Wai

    (Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

Abstract

With a focus on the problems of active power sharing and voltage deviation of parallel-connected inverters in an islanded micro-grid (MG), in this study, the power-voltage droop controller and the inner voltage regulator are redesigned based on a total sliding-mode control (TSMC) technique. As for the power-voltage droop control loop, a droop control relation error between the active power and the point-of-common-coupling (PCC) voltage amplitude is defined. Then, the TSMC scheme is adopted to reach the new droop control relation, where the active power sharing and voltage amplitude recovery can be achieved simultaneously. Owing to the faster dynamic response and strong robustness provided by the TSMC framework, high-precision active power sharing during transient state also can be ensured without the influence of line impedances. The power allocation error can be improved by more than 81.2% and 50% than the conventional and proportional-integral (PI)-based droop control methods, respectively, and the voltage deviation rate can be reduced to 0.16%. Moreover, a small-signal model of the TSMC-based droop-controlled system is established, and the influences of control parameters on the system stability and the dynamic response are also investigated. The effectiveness of the proposed control method is verified by numerical simulations and experimental results.

Suggested Citation

  • Quan-Quan Zhang & Rong-Jong Wai, 2021. "Robust Power Sharing and Voltage Stabilization Control Structure via Sliding-Mode Technique in Islanded Micro-Grid," Energies, MDPI, vol. 14(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:883-:d:495735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    2. Yaozhen Han & Ronglin Ma & Jinghan Cui, 2018. "Adaptive Higher-Order Sliding Mode Control for Islanding and Grid-Connected Operation of a Microgrid," Energies, MDPI, vol. 11(6), pages 1-17, June.
    3. Xiangwu Yan & Yang Cui & Sen Cui, 2019. "Control Method of Parallel Inverters with Self-Synchronizing Characteristics in Distributed Microgrid," Energies, MDPI, vol. 12(20), pages 1-20, October.
    4. Seyfettin Vadi & Sanjeevikumar Padmanaban & Ramazan Bayindir & Frede Blaabjerg & Lucian Mihet-Popa, 2019. "A Review on Optimization and Control Methods Used to Provide Transient Stability in Microgrids," Energies, MDPI, vol. 12(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Leśniewski & Andrzej Bartoszewicz, 2021. "Reaching Law Based Sliding Mode Control of Sampled Time Systems," Energies, MDPI, vol. 14(7), pages 1-19, March.
    2. Wenju Sang & Wenyong Guo & Shaotao Dai & Chenyu Tian & Suhang Yu & Yuping Teng, 2022. "Virtual Synchronous Generator, a Comprehensive Overview," Energies, MDPI, vol. 15(17), pages 1-29, August.
    3. Sandro Sitompul & Goro Fujita, 2021. "Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System," Energies, MDPI, vol. 14(8), pages 1-18, April.
    4. Ammar Armghan & Muhammad Kashif Azeem & Hammad Armghan & Ming Yang & Fayadh Alenezi & Mudasser Hassan, 2021. "Dynamical Operation Based Robust Nonlinear Control of DC Microgrid Considering Renewable Energy Integration," Energies, MDPI, vol. 14(13), pages 1-23, July.
    5. Giulio Ferro & Michela Robba & Roberto Sacile, 2021. "Optimal Control of Smart Distributed Power and Energy Systems," Energies, MDPI, vol. 15(1), pages 1-2, December.
    6. Shafaat Ullah & Laiq Khan & Mohsin Jamil & Muhammad Jafar & Sidra Mumtaz & Saghir Ahmad, 2021. "A Finite-Time Robust Distributed Cooperative Secondary Control Protocol for Droop-Based Islanded AC Microgrids," Energies, MDPI, vol. 14(10), pages 1-26, May.
    7. Saheb Khanabdal & Mahdi Banejad & Frede Blaabjerg & Nasser Hosseinzadeh, 2021. "A Novel Power Sharing Strategy Based on Virtual Flux Droop and Model Predictive Control for Islanded Low-Voltage AC Microgrids," Energies, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishita Ray, 2021. "Review of Impedance-Based Analysis Methods Applied to Grid-Forming Inverters in Inverter-Dominated Grids," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    3. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    4. Bojun Kong & Jian Zhu & Shengbo Wang & Xingmin Xu & Xiaokuan Jin & Junjie Yin & Jianhua Wang, 2023. "Comparative Study of the Transmission Capacity of Grid-Forming Converters and Grid-Following Converters," Energies, MDPI, vol. 16(6), pages 1-13, March.
    5. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    6. Ji-Won Lee & Mun-Kyeom Kim & Hyung-Joon Kim, 2021. "A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy," Energies, MDPI, vol. 14(3), pages 1-21, January.
    7. Mahdieh Najafzadeh & Natalia Strzelecka & Oleksandr Husev & Indrek Roasto & Kawsar Nassereddine & Dmitri Vinnikov & Ryszard Strzelecki, 2022. "Grid-Forming Operation of Energy-Router Based on Model Predictive Control with Improved Dynamic Performance," Energies, MDPI, vol. 15(11), pages 1-14, May.
    8. Waqas Anjum & Abdul Rashid Husain & Junaidi Abdul Aziz & M Abbas Abbasi & Hasan Alqaraghuli, 2020. "Continuous dynamic sliding mode control strategy of PWM based voltage source inverter under load variations," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-20, February.
    9. Ammar Armghan & Muhammad Kashif Azeem & Hammad Armghan & Ming Yang & Fayadh Alenezi & Mudasser Hassan, 2021. "Dynamical Operation Based Robust Nonlinear Control of DC Microgrid Considering Renewable Energy Integration," Energies, MDPI, vol. 14(13), pages 1-23, July.
    10. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    11. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Zaman, Forhad & Guerrero, Josep M., 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation," Applied Energy, Elsevier, vol. 254(C).
    12. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    13. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    14. Mingshen Li & Jose Matas & Jorge El Mariachet & Carlos Gustavo C. Branco & Josep M. Guerrero, 2022. "A Fast Power Calculation Algorithm for Three-Phase Droop-Controlled-Inverters Using Combined SOGI Filters and Considering Nonlinear Loads," Energies, MDPI, vol. 15(19), pages 1-16, October.
    15. Bojan Banković & Filip Filipović & Nebojša Mitrović & Milutin Petronijević & Vojkan Kostić, 2020. "A Building Block Method for Modeling and Small-Signal Stability Analysis of the Autonomous Microgrid Operation," Energies, MDPI, vol. 13(6), pages 1-28, March.
    16. Michael D. Cook & Eddy H. Trinklein & Gordon G. Parker & Rush D. Robinett & Wayne W. Weaver, 2019. "Optimal and Decentralized Control Strategies for Inverter-Based AC Microgrids," Energies, MDPI, vol. 12(18), pages 1-20, September.
    17. Shahid Aziz Khan & Mengqi Wang & Wencong Su & Guanliang Liu & Shivam Chaturvedi, 2022. "Grid-Forming Converters for Stability Issues in Future Power Grids," Energies, MDPI, vol. 15(14), pages 1-18, July.
    18. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(7), pages 1-32, March.
    19. Ya Zhang & Maurice G. L. Roes & Marcel A. M. Hendrix & Jorge L. Duarte, 2018. "Voltage Harmonic Suppression by Means of Grid-Connected Converters Using only Local Measurements," Energies, MDPI, vol. 11(10), pages 1-16, September.
    20. Yaozhen Han & Ronglin Ma, 2019. "Adaptive-Gain Second-Order Sliding Mode Direct Power Control for Wind-Turbine-Driven DFIG under Balanced and Unbalanced Grid Voltage," Energies, MDPI, vol. 12(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:883-:d:495735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.