IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p458-d481358.html
   My bibliography  Save this article

An Overview of Flow Assurance Heat Management Systems in Subsea Flowlines

Author

Listed:
  • Nsidibe Sunday

    (INSA Centre Val de Loire, Université Orléans, PRISME EA 4229, F-18020 Bourges, France)

  • Abdelhakim Settar

    (INSA Centre Val de Loire, Université Orléans, PRISME EA 4229, F-18020 Bourges, France)

  • Khaled Chetehouna

    (INSA Centre Val de Loire, Université Orléans, PRISME EA 4229, F-18020 Bourges, France)

  • Nicolas Gascoin

    (INSA Centre Val de Loire, Université Orléans, PRISME EA 4229, F-18020 Bourges, France)

Abstract

The enormous cost of handling the challenges of flow assurance in subsea wells, flowlines, and risers, especially in deepwater applications, has necessitated a proactive approach to prevent their risk of occurrence. To ensure that transportation of the hydrocarbon is economical and efficient from the subsea wellhead to the processing units, a flow assurance heat management system is relevant in the design and planning of a fluid transport system. Consequently, the advancement of new technologies to serve the increasing need by exploring the technologically challenging and hostile subsea fields is of great importance. A comparative study on heat management systems in flowlines was conducted from the top five publishers (Elsevier, Springer, Taylor & Francis, Wiley, and Sage) based on the number of publications to determine the level of work done by researchers in the last decade, the figures from the study showed the need for scientific research in the field of active heating. Additionally, a review was implemented to ascertain the likely advantages and drawbacks of each technique, its limitations concerning field applications and then recommend suitable cost-effective technique(s). The active heating system gives the most cost-effective solution for subsea deepwater fields.

Suggested Citation

  • Nsidibe Sunday & Abdelhakim Settar & Khaled Chetehouna & Nicolas Gascoin, 2021. "An Overview of Flow Assurance Heat Management Systems in Subsea Flowlines," Energies, MDPI, vol. 14(2), pages 1-38, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:458-:d:481358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stuart Lawson, 2015. "Fee Waivers for Open Access Journals," Publications, MDPI, vol. 3(3), pages 1-13, August.
    2. Huminic, Gabriela & Huminic, Angel, 2012. "Application of nanofluids in heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5625-5638.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nailiang Li & Bin Chen & Xueping Du & Dongtai Han, 2022. "Experimental and Numerical Study on the Elimination of Severe Slugging by Riser Outlet Choking," Energies, MDPI, vol. 15(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    2. Janusz T. Cieśliński & Dawid Lubocki & Slawomir Smolen, 2022. "Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 15(20), pages 1-22, October.
    3. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    4. Wu, Zan & Sundén, Bengt, 2014. "On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 11-27.
    5. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Leong, K.Y. & Ku Ahmad, K.Z. & Ong, Hwai Chyuan & Ghazali, M.J. & Baharum, Azizah, 2017. "Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 868-878.
    7. Nikša Alfirević & Lena Malešević Perović & Maja Mihaljević Kosor, 2023. "Productivity and Impact of Sustainable Development Goals (SDGs)-Related Academic Research: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    8. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    9. Laura Bowering Mullen, 2024. "Open Access, Scholarly Communication, and Open Science in Psychology: An Overview for Researchers," SAGE Open, , vol. 14(1_suppl), pages 21582440231, April.
    10. Taghizadeh-Tabari, Zohre & Zeinali Heris, Saeed & Moradi, Maryam & Kahani, Mostafa, 2016. "The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1318-1326.
    11. Janusz T. Cieśliński & Slawomir Smolen & Dorota Sawicka, 2021. "Effect of Temperature and Nanoparticle Concentration on Free Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 14(12), pages 1-19, June.
    12. Wang, Luhang & Xu, Chunwen & Wang, Chunli & Zhang, Lancai & Xu, Huanyong & Su, Huan & Zheng, Jianshi, 2025. "Prospects and challenges of seawater source heat pump utilization in China: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    13. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    14. Devendiran, Dhinesh Kumar & Amirtham, Valan Arasu, 2016. "A review on preparation, characterization, properties and applications of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 21-40.
    15. Jan Erik Frantsvåg & Tormod Eismann Strømme, 2019. "Few Open Access Journals Are Compliant with Plan S," Publications, MDPI, vol. 7(2), pages 1-18, April.
    16. Edin Berberović & Siniša Bikić, 2019. "Computational Study of Flow and Heat Transfer Characteristics of EG-Si 3 N 4 Nanofluid in Laminar Flow in a Pipe in Forced Convection Regime," Energies, MDPI, vol. 13(1), pages 1-16, December.
    17. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    18. Hemmati-Sarapardeh, Abdolhossein & Varamesh, Amir & Husein, Maen M. & Karan, Kunal, 2018. "On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 313-329.
    19. Akilu, Suleiman & Sharma, K.V. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman, 2016. "A review of thermophysical properties of water based composite nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 654-678.
    20. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:458-:d:481358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.