Economic Model Predictive Control for Post-Combustion CO 2 Capture System Based on MEA
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Akinola, Toluleke E. & Oko, Eni & Wu, Xiao & Ma, Keming & Wang, Meihong, 2020. "Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process," Energy, Elsevier, vol. 213(C).
- Di Wang & Xiao Wu & Jiong Shen, 2020. "An Efficient Robust Predictive Control of Main Steam Temperature of Coal-Fired Power Plant," Energies, MDPI, vol. 13(15), pages 1-24, July.
- Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
- Jochen Oexmann & Alfons Kather & Sebastian Linnenberg & Ulrich Liebenthal, 2012. "Post‐combustion CO 2 capture: chemical absorption processes in coal‐fired steam power plants," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 2(2), pages 80-98, April.
- Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- José Ramón Fernández, 2023. "An Overview of Advances in CO 2 Capture Technologies," Energies, MDPI, vol. 16(3), pages 1-4, February.
- Skjervold, Vidar T. & Mondino, Giorgia & Riboldi, Luca & Nord, Lars O., 2023. "Investigation of control strategies for adsorption-based CO2 capture from a thermal power plant under variable load operation," Energy, Elsevier, vol. 268(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tang, Zihan & Wu, Xiao, 2023. "Distributed predictive control guided by intelligent reboiler steam feedforward for the coordinated operation of power plant-carbon capture system," Energy, Elsevier, vol. 267(C).
- Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
- Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
- Skjervold, Vidar T. & Mondino, Giorgia & Riboldi, Luca & Nord, Lars O., 2023. "Investigation of control strategies for adsorption-based CO2 capture from a thermal power plant under variable load operation," Energy, Elsevier, vol. 268(C).
- Zhu, Mingjuan & Liu, Yudong & Wu, Xiao & Shen, Jiong, 2023. "Dynamic modeling and comprehensive analysis of direct air-cooling coal-fired power plant integrated with carbon capture for reliable, economic and flexible operation," Energy, Elsevier, vol. 263(PA).
- Wilkes, Mathew Dennis & Mukherjee, Sanjay & Brown, Solomon, 2021. "Transient CO2 capture for open-cycle gas turbines in future energy systems," Energy, Elsevier, vol. 216(C).
- Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
- Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Julio, Alisson Aparecido Vitoriano & Castro-Amoedo, Rafael & Maréchal, François & González, Aldemar Martínez & Escobar Palacio, José Carlos, 2023. "Exergy and economic analysis of the trade-off for design of post-combustion CO2 capture plant by chemical absorption with MEA," Energy, Elsevier, vol. 280(C).
- Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
- Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
- Wang, Tao & Yu, Wei & Le Moullec, Yann & Liu, Fei & Xiong, Yili & He, Hui & Lu, Jiahui & Hsu, Emily & Fang, Mengxiang & Luo, Zhongyang, 2017. "Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 205(C), pages 23-32.
- Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Basu, M., 2022. "Fuel constrained combined heat and power dynamic dispatch using horse herd optimization algorithm," Energy, Elsevier, vol. 246(C).
- Liu, W. & Ji, Y. & Wang, R.Q. & Zhang, X.J. & Jiang, L., 2023. "Analysis on temperature vacuum swing adsorption integrated with heat pump for efficient carbon capture," Applied Energy, Elsevier, vol. 335(C).
- Fontina Petrakopoulou & Diego Iribarren & Javier Dufour, 2015. "Life‐cycle performance of natural gas power plants with pre‐combustion CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 268-276, June.
- Hornbostel, K. & Nguyen, D. & Bourcier, W. & Knipe, J. & Worthington, M. & McCoy, S. & Stolaroff, J., 2019. "Packed and fluidized bed absorber modeling for carbon capture with micro-encapsulated sodium carbonate solution," Applied Energy, Elsevier, vol. 235(C), pages 1192-1204.
- Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
- Kong, Xiaobing & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2023. "Stable feedback linearization-based economic MPC scheme for thermal power plant," Energy, Elsevier, vol. 268(C).
- Song He & Yawen Zheng, 2024. "CO 2 Capture Cost Reduction Potential of the Coal-Fired Power Plants under High Penetration of Renewable Power in China," Energies, MDPI, vol. 17(9), pages 1-15, April.
More about this item
Keywords
post-combustion CO 2 capture system; economic model predictive control; economic performance indicators; Aspen Plus Dynamics; subspace identification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8160-:d:695606. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.