IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7772-d683268.html
   My bibliography  Save this article

Advanced Modeling of Enclosed Airspaces to Determine Thermal Resistance for Building Applications

Author

Listed:
  • Hamed H. Saber

    (Prince Saud bin Thuniyan Research Center, Mechanical Engineering Department, Jubail University College, Royal Commission of Jubail and Yanbu, Jubail Industrial City 35716, Saudi Arabia)

  • David W. Yarbrough

    (R&D Services, Inc., Watertown, TN 37184, USA)

Abstract

Enclosed airspaces to reduce heat flow have been recognized for well over 100 years. Airspaces with one or more reflective surfaces define reflective insulation (RI) assemblies, a product type used in walls, roofs, windows with multiple panes, curtain walls and skylights. The thermal resistance (R value) of airspaces depends on the emittance of all surfaces, airspace dimensions and orientation, heat flow direction and surfaces temperatures. The modeling of RI now includes CFD coupled with radiation to quantify the total heat transfer. This study compares a validated model for airspace R values with existing methods such as ISO 6946 and hot-box results that provide the R values in the ASHRAE Handbook of Fundamentals. The existing methods do not include an airspace aspect ratio. This study showed that the aspect ratio can impact the R value by a factor of two. The impact of aspect ratio was calculated for double airspaces variation such as that for single airspaces. The present calculations are two-dimensional and also consider all the bounding airspace surfaces, while previous methods are one-dimensional and do not include surface temperature variations or detailed radiative transport.

Suggested Citation

  • Hamed H. Saber & David W. Yarbrough, 2021. "Advanced Modeling of Enclosed Airspaces to Determine Thermal Resistance for Building Applications," Energies, MDPI, vol. 14(22), pages 1-36, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7772-:d:683268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Sau Wai & Lim, Chin Haw & Salleh, Elias @ Ilias Bin, 2016. "Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 643-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenglong Jia & Wenbin Zhao & Yong Zhu & Wu Lu & Zhong Tang, 2022. "A Numerical Study on the Decomposition and Diffusion Characteristics of SF 6 in Gas-Insulated Switchgear with Consideration of the Temperature Rising Effect," Energies, MDPI, vol. 15(21), pages 1-16, October.
    2. Hamed H. Saber & Ali E. Hajiah, 2022. "Thermal Resistance of 30° Sloped, Enclosed Airspaces Subjected to Upward Heat Flow," Sustainability, MDPI, vol. 14(6), pages 1-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Rempel, Alexandra R. & Danis, Jackson & Rempel, Alan W. & Fowler, Michael & Mishra, Sandipan, 2022. "Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest," Applied Energy, Elsevier, vol. 321(C).
    4. Wang, Cheng & Guo, Xiaofeng & Zhu, Ye, 2019. "Energy saving with Optic-Variable Wall for stable air temperature control," Energy, Elsevier, vol. 173(C), pages 38-47.
    5. Yutong Li & Atsushi Teramoto & Takaaki Ohkubo & Akihiro Sugiyama, 2022. "Estimation of Indoor Temperature Increments in Summers Using Heat-Flow Sensors to Assess the Impact of Roof Slab Insulation Methods," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    6. Pourghorban, Arash & Kari, Behrouz Mohammad & Asoodeh, Hedyeh, 2022. "Holistic survey of reflective insulation systems (RISs) in vertical applications in building envelopes under various climatic conditions," Energy, Elsevier, vol. 242(C).
    7. Lima-Téllez, T. & Chávez, Y. & Hernández-López, I. & Xamán, J. & Hernández-Pérez, I., 2022. "Annual thermal evaluation of a ventilated roof under warm weather conditions of Mexico," Energy, Elsevier, vol. 246(C).
    8. Paola Marrone & Francesco Asdrubali & Daniela Venanzi & Federico Orsini & Luca Evangelisti & Claudia Guattari & Roberto De Lieto Vollaro & Lucia Fontana & Gianluca Grazieschi & Paolo Matteucci & Marta, 2021. "On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic Issues," Energies, MDPI, vol. 14(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7772-:d:683268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.