IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7444-d674753.html
   My bibliography  Save this article

The Elephant Problem—Determining Bulk Thermal Diffusivity

Author

Listed:
  • Robert Beaufait

    (Competence Center Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, Technikumstrasse 21, 6048 Horw, Switzerland)

  • Sebastian Ammann

    (Competence Center Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, Technikumstrasse 21, 6048 Horw, Switzerland)

  • Ludger Fischer

    (Competence Center Thermal Energy Storage (CCTES), Lucerne University of Applied Sciences and Arts, Technikumstrasse 21, 6048 Horw, Switzerland)

Abstract

This study investigates a measurement method of thermal diffusivity for samples with arbitrary geometries and unknown material properties. The aim is to curve fit the thermal diffusivity with the use of a numerical simulation and transient temperature measurement inside the object of interest. This approach is designed to assess bulk material properties of an object that has a composite material structure such as underground soil. The method creates the boundary conditions necessary to apply analytical theory found in the literature. It was found that measurements best correlated with theory and simulation at positions between the center and surface of an object.

Suggested Citation

  • Robert Beaufait & Sebastian Ammann & Ludger Fischer, 2021. "The Elephant Problem—Determining Bulk Thermal Diffusivity," Energies, MDPI, vol. 14(21), pages 1-10, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7444-:d:674753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sascha Henninger & Darline Christmann, 2023. "Teaching about Climate-Efficient Buildings in the Context of Geographic Education for Sustainability," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Jiaming Wang & Hailong He & Miles Dyck & Jialong Lv, 2020. "A Review and Evaluation of Predictive Models for Thermal Conductivity of Sands at Full Water Content Range," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Cárdenas-Ramírez, Carolina & Gómez, Maryory A. & Jaramillo, Franklin & Fernández, Angel G. & Cabeza, Luisa F., 2021. "Experimental determination of thermal conductivity of fatty acid binary mixtures and their shape-stabilized composites," Renewable Energy, Elsevier, vol. 175(C), pages 1167-1173.
    4. Xiaolei Wang & Xiaoshu Lü & Lauri Vähä-Savo & Katsuyuki Haneda, 2023. "A Novel AI-Based Thermal Conductivity Predictor in the Insulation Performance Analysis of Signal-Transmissive Wall," Energies, MDPI, vol. 16(10), pages 1-16, May.
    5. Rolka, Paulina & Przybylinski, Tomasz & Kwidzinski, Roman & Lackowski, Marcin, 2022. "Thermal properties of RT22 HC and RT28 HC phase change materials proposed to reduce energy consumption in heating and cooling systems," Renewable Energy, Elsevier, vol. 197(C), pages 462-471.
    6. Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2019. "Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement," Energy, Elsevier, vol. 188(C).
    7. Yu, Qiang & Zhang, Cancan & Lu, Yuanwei & Kong, Qinglong & Wei, Haijiao & Yang, Yanchun & Gao, Qi & Wu, Yuting & Sciacovelli, Adriano, 2021. "Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1120-1132.
    8. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7444-:d:674753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.