IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7013-d664866.html
   My bibliography  Save this article

Energy Performance and Benchmarking for University Classrooms in Hot and Humid Climates

Author

Listed:
  • Jaqueline Litardo

    (Department of Architecture, Built, Environment and Construction Engineering (DABC), Politecnico di Milano, Via Ponzio 31, 20133 Milan, Italy)

  • Ruben Hidalgo-Leon

    (Centro de Energías Renovables y Alternativas CERA, Escuela Superior Politécnica del Litoral ESPOL, Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador)

  • Guillermo Soriano

    (Centro de Energías Renovables y Alternativas CERA, Escuela Superior Politécnica del Litoral ESPOL, Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador)

Abstract

In this paper, the energy performance of a university campus in a tropical climate is assessed, and four mixed classroom buildings are compared using benchmarking methods based on simple normalization: the classic Energy Use Intensity (EUI), end-used based EUI, and people-based EUI. To estimate the energy consumption of the case studies, building energy simulations were carried out in EnergyPlus using custom inputs. The analysis found that buildings with more classroom spaces presented higher energy consumption for cooling and lighting than others. In comparison, buildings with a greater percentage of laboratories and offices exhibited higher energy consumption for plug loads. Nevertheless, differences were identified when using the people-based EUI since buildings with larger floor areas showed the highest values, highlighting the impact of occupant behavior on energy consumption. Given the fact that little is known about a benchmark range for university campuses and academic buildings in hot and humid climates, this paper also provides a comparison against the EUIs reported in the literature for both cases. In this sense, the identified range for campuses was 49–367 kWh/m 2 /year, while for academic buildings, the range was 47–628 kWh/m 2 /year. Overall, the findings of this study could contribute to identifying better-targeted energy efficiency strategies for the studied buildings in the future by assessing their performance under different indicators and drawing a benchmark to compare similar buildings in hot and humid climates.

Suggested Citation

  • Jaqueline Litardo & Ruben Hidalgo-Leon & Guillermo Soriano, 2021. "Energy Performance and Benchmarking for University Classrooms in Hot and Humid Climates," Energies, MDPI, vol. 14(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7013-:d:664866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arjunan, Pandarasamy & Poolla, Kameshwar & Miller, Clayton, 2020. "EnergyStar++: Towards more accurate and explanatory building energy benchmarking," Applied Energy, Elsevier, vol. 276(C).
    2. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    3. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    4. Mehdi Chihib & Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2020. "Benchmarking Energy Use at University of Almeria (Spain)," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    5. He, Zhiyuan & Hong, Tianzhen & Chou, S.K., 2021. "A framework for estimating the energy-saving potential of occupant behaviour improvement," Applied Energy, Elsevier, vol. 287(C).
    6. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    7. Kim, Sang-Chul & Shin, Hyun-Ik & Ahn, Jonghoon, 2020. "Energy performance analysis of airport terminal buildings by use of architectural, operational information and benchmark metrics," Journal of Air Transport Management, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Catalina Vallejo-Coral & Ricardo Garzón & Miguel Darío Ortega López & Javier Martínez-Gómez & Marcelo Moya, 2024. "Determine the Profiles of Power Consumption in Commercial Buildings in a Very Hot Humid Climate Using a Temporary Series," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
    2. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    3. Laporte, Juan P. & Román-Collado, Rocío & Cansino, José M., 2024. "Key driving forces of energy consumption in a higher education institution using the LMDI approach: The case of the Universidad Autónoma de Chile," Applied Energy, Elsevier, vol. 372(C).
    4. Farah Shoukry & Rana Raafat & Khaled Tarabieh & Sherif Goubran, 2024. "Indoor Air Quality and Ventilation Energy in University Classrooms: Simplified Model to Predict Trade-Offs and Synergies," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    5. Kusnandar & Indra Permana & Weiming Chiang & Fujen Wang & Changyu Liou, 2022. "Energy Consumption Analysis for Coupling Air Conditioners and Cold Storage Showcase Equipment in a Convenience Store," Energies, MDPI, vol. 15(13), pages 1-13, July.
    6. Ravita D. Prasad, 2024. "School Electricity Consumption in a Small Island Country: The Case of Fiji," Energies, MDPI, vol. 17(7), pages 1-25, April.
    7. Katarina Bäcklund & Marco Molinari & Per Lundqvist & Björn Palm, 2023. "Building Occupants, Their Behavior and the Resulting Impact on Energy Use in Campus Buildings: A Literature Review with Focus on Smart Building Systems," Energies, MDPI, vol. 16(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Yang, Sungwoong & Wi, Seunghwan & Park, Ji Hun & Cho, Hyun Mi & Kim, Sumin, 2020. "Framework for developing a building material property database using web crawling to improve the applicability of energy simulation tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Vaisi, Salah & Varmazyari, Pouya & Esfandiari, Masoud & Sharbaf, Sara A., 2023. "Developing a multi-level energy benchmarking and certification system for office buildings in a cold climate region," Applied Energy, Elsevier, vol. 336(C).
    4. Yan, Biao & Yang, Wansheng & He, Fuquan & Zeng, Wenhao, 2023. "Occupant behavior impact in buildings and the artificial intelligence-based techniques and data-driven approach solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Li, Tian & Bie, Haipei & Lu, Yi & Sawyer, Azadeh Omidfar & Loftness, Vivian, 2024. "MEBA: AI-powered precise building monthly energy benchmarking approach," Applied Energy, Elsevier, vol. 359(C).
    6. Edgar A. Martínez-Sarmiento & Jose Manuel Broto & Eloi Gabaldon & Jordi Cipriano & Roberto García & Stoyan Danov, 2024. "Linked Data Generation Methodology and the Geospatial Cross-Sectional Buildings Energy Benchmarking Use Case," Energies, MDPI, vol. 17(12), pages 1-24, June.
    7. Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
    8. Laporte, Juan P. & Román-Collado, Rocío & Cansino, José M., 2024. "Key driving forces of energy consumption in a higher education institution using the LMDI approach: The case of the Universidad Autónoma de Chile," Applied Energy, Elsevier, vol. 372(C).
    9. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    10. Rafał Krupiński, 2020. "Virtual Reality System and Scientific Visualisation for Smart Designing and Evaluating of Lighting," Energies, MDPI, vol. 13(20), pages 1-17, October.
    11. Marta Gangolells & Miquel Casals & Núria Forcada & Marcel Macarulla, 2020. "Life Cycle Analysis of a Game-Based Solution for Domestic Energy Saving," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    12. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    13. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    14. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Rita, Rui & Marques, Vitor & Bárbara, Diogo & Chaves, Inês & Macedo, Pedro & Moutinho, Victor & Pereira, Mariana, 2023. "Crossing non-parametric and parametric techniques for measuring the efficiency: Evidence from 65 European electricity Distribution System Operators," Energy, Elsevier, vol. 283(C).
    16. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Ana Ogando-Martínez & Javier López-Gómez & Lara Febrero-Garrido, 2018. "Maintenance Factor Identification in Outdoor Lighting Installations Using Simulation and Optimization Techniques," Energies, MDPI, vol. 11(8), pages 1-13, August.
    18. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    19. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    20. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7013-:d:664866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.