IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6268-d648516.html
   My bibliography  Save this article

Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation

Author

Listed:
  • Karolina Kucharska

    (Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland)

  • Patrycja Makoś-Chełstowska

    (Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland)

  • Edyta Słupek

    (Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland)

  • Jacek Gębicki

    (Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland)

Abstract

Lignocellulose and starch-based raw materials are often applied in the investigations regarding biohydrogen generation using dark fermentation. Management of the arising post-fermentation broth becomes a problem. The Authors proposed sequential processes, to improve the efficiency of both hydrogen generation and by-products management carried under model conditions. During the proposed procedure, the simple sugars remaining in broth are converted into organic acids, and when these products are used as substrates for the photo fermentation process. To enhance the broth management also conditions promoting Deep Eutectic Solvents (DES) precursors synthesis are simultaneously applied. Application of Box-Behnken design allows defining of the optimal conditions for conversion to DESs precursors. During the procedure hydrogen was obtained, the concentration of hydrogen in the photo fermentation reached up to 819 mL H2 /L medium /7 d, depending on the broth type, i.e., when the broth was optimized for formic acid concentration. The DESs precursors were separated and engaged in DESs synthesis. To confirm the formation of the DESs, FT-IR analyses were performed. The Chemical Oxygen Demand of post-fermentation broths after dark fermentation optimized for formic acid was reduced by ca. 82%. The proposed procedure can be successfully used as a method of post-fermentation broth management.

Suggested Citation

  • Karolina Kucharska & Patrycja Makoś-Chełstowska & Edyta Słupek & Jacek Gębicki, 2021. "Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation," Energies, MDPI, vol. 14(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6268-:d:648516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    2. Rafał Łukajtis & Piotr Rybarczyk & Karolina Kucharska & Donata Konopacka-Łyskawa & Edyta Słupek & Katarzyna Wychodnik & Marian Kamiński, 2018. "Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis," Energies, MDPI, vol. 11(4), pages 1-27, April.
    3. Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
    4. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Esposito & Silvio Matassa & Stefano Papirio, 2022. "Biovalorization of Lignocellulosic Waste," Energies, MDPI, vol. 15(21), pages 1-3, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chalima, Angelina & Hatzidaki, Angeliki & Karnaouri, Anthi & Topakas, Evangelos, 2019. "Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids," Applied Energy, Elsevier, vol. 241(C), pages 130-138.
    2. Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    5. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    6. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    7. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    8. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    9. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    10. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    12. Rios-Del Toro, E. Emilia & Chi, Hetian & González-Álvarez, Víctor & Méndez-Acosta, Hugo O. & Arreola-Vargas, Jorge & Liu, Hao, 2021. "Coupling the biochemical and thermochemical biorefinery platforms to enhance energy and product recovery from Agave tequilana bagasse," Applied Energy, Elsevier, vol. 299(C).
    13. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    14. Xu, Xiwei & Jiang, Enchen & Li, Zhiyu & Zhu, Xiongfa & Sun, Yan & Tu, Ren, 2019. "Alkene and benzene derivate obtained from catalytic reforming of acetone-butanol-ethanol (ABE) from carbohydrates fermentation broth," Renewable Energy, Elsevier, vol. 135(C), pages 1213-1223.
    15. Przemysław Liczbiński & Sebastian Borowski, 2020. "Hyperthermophilic Treatment of Grass and Leaves to Produce Hydrogen, Methane and VFA-Rich Digestate: Preliminary Results," Energies, MDPI, vol. 13(11), pages 1-12, June.
    16. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.
    17. Trchounian, Karen & Poladyan, Anna & Trchounian, Armen, 2016. "Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures," Applied Energy, Elsevier, vol. 177(C), pages 335-340.
    18. Jakub Mazurkiewicz & Pola Sidoruk & Jacek Dach & Malgorzata Szumacher-Strabel & Dorota Lechniak & Paul Galama & Abele Kuipers & Ireneusz R. Antkowiak & Adam Cieslak, 2023. "Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows," Agriculture, MDPI, vol. 13(10), pages 1-11, October.
    19. Tran Thi Giang & Siriporn Lunprom & Qiang Liao & Alissara Reungsang & Apilak Salakkam, 2019. "Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF)," Energies, MDPI, vol. 12(5), pages 1-14, March.
    20. Vasmara, Ciro & Marchetti, Rosa & Carminati, Domenico, 2021. "Wastewater from the production of lactic acid bacteria as feedstock in anaerobic digestion," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6268-:d:648516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.