IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5760-d634433.html
   My bibliography  Save this article

Nonlinear Controller for the Set-Point Regulation of a Buck Converter System

Author

Listed:
  • Eduardo Campos-Mercado

    (CONACYT-Universidad del Istmo, Santo Domingo Tehuantepec, Oaxaca 70760, Mexico
    These authors contributed equally to this work.)

  • Edwin Fernando Mendoza-Santos

    (Universidad del Istmo, Santo Domingo Tehuantepec, Oaxaca 70760, Mexico
    These authors contributed equally to this work.)

  • Jorge Antonio Torres-Muñoz

    (Departamento de Control Automatico, CINVESTAV, Ciudad de México 07360, Mexico
    These authors contributed equally to this work.)

  • Edwin Román-Hernández

    (Universidad del Istmo, Santo Domingo Tehuantepec, Oaxaca 70760, Mexico
    These authors contributed equally to this work.)

  • Víctor Iván Moreno-Oliva

    (Universidad del Istmo, Santo Domingo Tehuantepec, Oaxaca 70760, Mexico
    These authors contributed equally to this work.)

  • Quetzalcoatl Hernández-Escobedo

    (Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Queretaro 76230, Mexico
    These authors contributed equally to this work.)

  • Alberto-Jesus Perea-Moreno

    (Departamento de Física Aplicada, Radiología y Medicina Física, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
    These authors contributed equally to this work.)

Abstract

In this paper, we present a nonlinear PID controller based on saturation functions with variable parameters in order to regulate the output voltage of a buck converter in the presence of changes in the input voltage. The main feature of the proposed controller is to bound the control input with a variable parameter to avoid the windup effect generated by the combination of the integral control action and some operation conditions. The main advantages of the proposed nonlinear PID controller are its low computing cost and the simple tuning task to implement the control strategy in an embedded system. The acceptable behavior of the closed-loop system is presented through the simulation and experimental results.

Suggested Citation

  • Eduardo Campos-Mercado & Edwin Fernando Mendoza-Santos & Jorge Antonio Torres-Muñoz & Edwin Román-Hernández & Víctor Iván Moreno-Oliva & Quetzalcoatl Hernández-Escobedo & Alberto-Jesus Perea-Moreno, 2021. "Nonlinear Controller for the Set-Point Regulation of a Buck Converter System," Energies, MDPI, vol. 14(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5760-:d:634433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Jiang & Enliang Liu & Ding Liu, 2020. "A Mode Selected Mixed Logic Dynamic Model and Model Predictive Control of Buck Converter," Complexity, Hindawi, vol. 2020, pages 1-11, January.
    2. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    3. Saleh Mobayen & Farhad Bayat & Chun-Chi Lai & Asghar Taheri & Afef Fekih, 2021. "Adaptive Global Sliding Mode Controller Design for Perturbed DC-DC Buck Converters," Energies, MDPI, vol. 14(5), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patryk Chaber & Andrzej Wojtulewicz, 2022. "Flexible Matrix of Controllers for Real Time Parallel Control," Energies, MDPI, vol. 15(5), pages 1-23, March.
    2. Martin A. Alarcón-Carbajal & José E. Carvajal-Rubio & Juan D. Sánchez-Torres & David E. Castro-Palazuelos & Guillermo J. Rubio-Astorga, 2022. "An Output Feedback Discrete-Time Controller for the DC-DC Buck Converter," Energies, MDPI, vol. 15(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    3. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    4. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    5. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    6. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    7. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    8. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    9. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    10. Katarzyna Adamiak & Andrzej Bartoszewicz, 2022. "Novel Power-Rate Reaching Law for Quasi-Sliding Mode Control," Energies, MDPI, vol. 15(15), pages 1-14, July.
    11. Tingting Pei & Xiaohong Hao & Qun Gu, 2018. "A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-16, October.
    12. Rakeshkumar Mahto & Deepak Sharma & Reshma John & Chandrasekhar Putcha, 2021. "Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers," Land, MDPI, vol. 10(11), pages 1-28, November.
    13. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    14. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    15. Divya Shetty & Jayalakshmi N. Sabhahit & Ganesh Kudva, 2024. "A Methodology to Optimize PMSM Driven Solar Water Pumps Using a Hybrid MPPT Approach in Partially Shaded Conditions," Clean Technol., MDPI, vol. 6(3), pages 1-31, September.
    16. Bustani Hadi Wijaya & Ramadhani Kurniawan Subroto & Kuo Lung Lian & Nanang Hariyanto, 2020. "A Maximum Power Point Tracking Method Based on a Modified Grasshopper Algorithm Combined with Incremental Conductance," Energies, MDPI, vol. 13(17), pages 1-19, August.
    17. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    18. Ko, Suk Whan & Ju, Young Chul & Hwang, Hye Mi & So, Jung Hun & Jung, Young-Seok & Song, Hyung-Jun & Song, Hee-eun & Kim, Soo-Hyun & Kang, Gi Hwan, 2017. "Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode," Energy, Elsevier, vol. 128(C), pages 232-243.
    19. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    20. Verma, Ravikant & Gupta, Shubhrata & Yadav, Anamika, 2024. "Performance evaluation of different photovoltaic array configurations under partial shading," Renewable Energy, Elsevier, vol. 237(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5760-:d:634433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.