IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5751-d634341.html
   My bibliography  Save this article

Synthesis and Analysis of Three-Port DC/DC Converters with Two Bidirectional Ports Based on Power Flow Graph Technique

Author

Listed:
  • Hamzeh Aljarajreh

    (Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Dylan Dah-Chuan Lu

    (Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Yam P. Siwakoti

    (Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Chi K. Tse

    (Department of Electrical Engineering, City University of Hong Kong, Tai Chee Avenue, Kowloon Tong, Hong Kong)

  • K. W. See

    (Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Wollongong, NSW 2522, Australia)

Abstract

This paper presents a systematic topological study to derive all possible basic and non-isolated three-port converters (TPCs) using power flow diagrams. Unlike most reported TPCs with one bidirectional port, this paper considers up to two bidirectional ports and provides a comprehensive analytical tool. This tool acts as a framework for all power flow combinations, selection, and design. Some viable converter configurations have been identified and selected for further analysis.

Suggested Citation

  • Hamzeh Aljarajreh & Dylan Dah-Chuan Lu & Yam P. Siwakoti & Chi K. Tse & K. W. See, 2021. "Synthesis and Analysis of Three-Port DC/DC Converters with Two Bidirectional Ports Based on Power Flow Graph Technique," Energies, MDPI, vol. 14(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5751-:d:634341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Neng & Sutanto, Danny & Muttaqi, Kashem M., 2016. "A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 388-401.
    2. Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2020. "A Refined Loss Evaluation of a Three-Switch Double Input DC-DC Converter for Hybrid Vehicle Applications," Energies, MDPI, vol. 13(1), pages 1-13, January.
    3. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    4. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Augusto Cantane & Adalberto Teogenes Tavares Junior & Ediane Karine Scherer Isernhagen & Nathalie Danree Busti & Alexsandra Rospirski & Tales Gottlieb Jahn & Fernando Marcos de Oliveira, 2022. "FBM-CSoC Control and Management System for Multi-Port Converter Applied in Hybrid Energy Storage System Used in Microgrid," Energies, MDPI, vol. 15(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sri Revathi, B. & Prabhakar, M., 2016. "Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 920-933.
    2. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    3. Zhang, Neng & Sutanto, Danny & Muttaqi, Kashem M., 2016. "A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 388-401.
    4. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    5. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    6. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    8. Galindo Noguera, Ana Lisbeth & Mendoza Castellanos, Luis Sebastian & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2018. "Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil," Energy, Elsevier, vol. 142(C), pages 33-45.
    9. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    10. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    11. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    12. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    13. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Katheryn Donado & Loraine Navarro & Christian G. Quintero M. & Mauricio Pardo, 2019. "HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems," Energies, MDPI, vol. 13(1), pages 1-20, December.
    15. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    16. Arash Khalilnejad & Aditya Sundararajan & Alireza Abbaspour & Arif Sarwat, 2016. "Optimal Operation of Combined Photovoltaic Electrolyzer Systems," Energies, MDPI, vol. 9(5), pages 1-12, April.
    17. Lu, Changyu & Hoang, Tuan K.A. & Doan, The Nam Long & Zhao, Hongbin & Pan, Ran & Yang, Li & Guan, Weisheng & Chen, P., 2016. "Rechargeable hybrid aqueous batteries using silica nanoparticle doped aqueous electrolytes," Applied Energy, Elsevier, vol. 170(C), pages 58-64.
    18. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    19. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    20. Sheikh Md. Nahid Hasan & Shameem Ahmad & Abrar Fahim Liaf & A. G. M. B. Mustayen & M. M. Hasan & Tofael Ahmed & Sujan Howlader & Mahamudul Hassan & Mohammad Rafiqul Alam, 2024. "Techno-Economic Performance and Sensitivity Analysis of an Off-Grid Renewable Energy-Based Hybrid System: A Case Study of Kuakata, Bangladesh," Energies, MDPI, vol. 17(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5751-:d:634341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.