IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5613-d630725.html
   My bibliography  Save this article

Feedback Linearization-Based Control Strategy for Interlinking Inverters of Hybrid AC/DC Microgrids with Seamless Operation Mode Transition

Author

Listed:
  • Thanh Hai Nguyen

    (Faculty of Engineering Technology and Science, Higher Colleges of Technology, Dubai P.O. Box 16062, United Arab Emirates)

  • Tan Luong Van

    (Department of Electrical and Electronics Engineering, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Ho Chi Minh City 760310, Vietnam)

  • Asif Nawaz

    (Faculty of Engineering Technology and Science, Higher Colleges of Technology, Dubai P.O. Box 16062, United Arab Emirates)

  • Ammar Natsheh

    (Faculty of Engineering Technology and Science, Higher Colleges of Technology, Dubai P.O. Box 16062, United Arab Emirates)

Abstract

This study proposes an advanced control scheme for the interlinking inverters of the hybrid AC/DC microgrids, which facilitates a seamless transition between grid-connected and stand-alone/islanding modes for the microgrid. Due to a nonlinear relationship between the terminal voltages of the voltage-source inverter (VSI) interfacing through inductor–capacitor (LC) filters with the grid voltages and currents, a feedback linearization technique (FLT) is employed to control the interlinking VSI under both grid-connected and islanding operations. The FLT-based current controllers are applied in the grid-connected mode, in which they adjust the power exchange between the DC and AC subgrids and mitigate the distortion of the grid currents produced by nonlinear loads. Under the stand-alone operation, the AC bus voltages are directly regulated by the FLT-voltage controllers of the interlinking VSI. In order to reduce the inrush currents and voltage overshot at the instant of mode switching, the FLT-based controllers are performed all the time regardless of the operating modes, where the voltage references for the VSI are not changed abruptly. The control performance of the VSI is highly satisfactory with low-transient overshoot values of the voltages and currents and low total harmonic distortion (THD) values of the grid currents and AC bus voltages are about 3.5% and 2.7%, respectively, under the nonlinear load condition. The validity of the new control strategy is verified by the simulation work, which investigates the operation of a hybrid AC/DC microgrid.

Suggested Citation

  • Thanh Hai Nguyen & Tan Luong Van & Asif Nawaz & Ammar Natsheh, 2021. "Feedback Linearization-Based Control Strategy for Interlinking Inverters of Hybrid AC/DC Microgrids with Seamless Operation Mode Transition," Energies, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5613-:d:630725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Li & Hongda Cai & Pengcheng Yang & Wei Wei, 2021. "A Bus-Sectionalized Hybrid AC/DC Microgrid: Concept, Control Paradigm, and Implementation," Energies, MDPI, vol. 14(12), pages 1-24, June.
    2. Jung-min Park & Hyung-jun Byun & Sung-hun Kim & Si-hwan Kim & Chung-yuen Won, 2021. "DC Solid-State Circuit Breakers with Two-Winding Coupled Inductor for DC Microgrid," Energies, MDPI, vol. 14(14), pages 1-13, July.
    3. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    2. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Shumei Chi & Zhipeng Lv & Lan Liu & Yang Shan, 2021. "Free Switching Control Strategy for Multi-Operation Modes of Multi-Port Energy Router in Distribution Area," Energies, MDPI, vol. 14(23), pages 1-24, November.
    4. Thanh Hai Nguyen & Asif Nawaz & Preetha Sreekumar & Ammar Natsheh & Vishwesh Akre & Tan Luong Van, 2022. "Implementation and Validation for Multitasks of a Cost-Effective Scheme Based on ESS and Braking Resistors in PMSG Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    4. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    5. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Teresa Pakulska, 2023. "The Energy Crisis—Looking at the Renewable Transition," Energies, MDPI, vol. 16(15), pages 1-3, July.
    7. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    8. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    9. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    10. Timothé Gronier & William Maréchal & Christophe Geissler & Stéphane Gibout, 2022. "Usage of GAMS-Based Digital Twins and Clustering to Improve Energetic Systems Control," Energies, MDPI, vol. 16(1), pages 1-17, December.
    11. Maria Fotopoulou & Dimitrios Rakopoulos & Dimitrios Trigkas & Fotis Stergiopoulos & Orestis Blanas & Spyros Voutetakis, 2021. "State of the Art of Low and Medium Voltage Direct Current (DC) Microgrids," Energies, MDPI, vol. 14(18), pages 1-27, September.
    12. Łukasz Rokicki, 2021. "Optimization of the Configuration and Operating States of Hybrid AC/DC Low Voltage Microgrid Using a Clonal Selection Algorithm with a Modified Hypermutation Operator," Energies, MDPI, vol. 14(19), pages 1-24, October.
    13. M. Bilal Nasir & Asif Hussain & Kamran Ali Khan Niazi & Mashood Nasir, 2022. "An Optimal Energy Management System (EMS) for Residential and Industrial Microgrids," Energies, MDPI, vol. 15(17), pages 1-18, August.
    14. Tae-Gyu Kim & Hoon Lee & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2023. "Hybrid AC/DC Microgrid Energy Management Strategy Based on Two-Step ANN," Energies, MDPI, vol. 16(4), pages 1-23, February.
    15. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    16. Jonas Sievers & Thomas Blank, 2023. "A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems," Energies, MDPI, vol. 16(4), pages 1-21, February.
    17. Mahmoud F. Elmorshedy & Umashankar Subramaniam & Jagabar Sathik Mohamed Ali & Dhafer Almakhles, 2023. "Energy Management of Hybrid DC Microgrid with Different Levels of DC Bus Voltage for Various Load Types," Energies, MDPI, vol. 16(14), pages 1-32, July.
    18. Sathesh Murugan & Mohana Jaishankar & Kamaraj Premkumar, 2022. "Hybrid DC–AC Microgrid Energy Management System Using an Artificial Gorilla Troops Optimizer Optimized Neural Network," Energies, MDPI, vol. 15(21), pages 1-19, November.
    19. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    20. Jorge A. Solsona & Sebastian Gomez Jorge & Claudio A. Busada, 2022. "Modeling and Nonlinear Control of dc–dc Converters for Microgrid Applications," Sustainability, MDPI, vol. 14(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5613-:d:630725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.