IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3698-d579031.html
   My bibliography  Save this article

An Eco-Friendly Gas Insulated Transformer Design

Author

Listed:
  • Ezgi Guney

    (Department of Electrical and Energy, Vocational High School, Sinop University, Sinop 57000, Turkey)

  • Okan Ozgonenel

    (Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayis University, Atakum 55139, Turkey)

Abstract

Electricity companies around the world are constantly seeking ways to provide electricity more safely and efficiently while reducing the negative impact on the environment. Mineral oils have been the most popular transformer insulation, having excellent electrical insulating properties, but have many problems such as high flammability, significant cleaning problems, and are toxic to fish and wildlife. This paper presents an alternative approach to mineral oil: a transformer design that is clean and provides better performance and environmental benefits. A 50 kVA, 34.5/0.4 kV gas insulated distribution transformer was designed and evaluated using the COMSOL Multiphysics environment. R410A was used as insulation material. R410A is a near-azeotropic mixture of difluoromethane (CH2F2, called R-32) and pentafluoro ethane (C2HF5, called R-125), which is used as a refrigerant in air conditioning applications. It has excellent properties including environmentally friendly, no-ozone depletion, low greenhouse effect, non-explosive and non-flammable, First, the breakdown voltage of the selected gas was determined. The electrostatic and thermal properties of the R410A gas insulated transformer were investigated in the COMSOL environment. The simulation results for the performance of oil and SF6 gas insulated transformers using the same model were compared. The gas-insulated transformer is believed to have equivalent performance and is an environmentally friendly alternative to current oil-based transformers.

Suggested Citation

  • Ezgi Guney & Okan Ozgonenel, 2021. "An Eco-Friendly Gas Insulated Transformer Design," Energies, MDPI, vol. 14(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3698-:d:579031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abderrahmane Beroual & Abderrahmane (Manu) Haddad, 2017. "Recent Advances in the Quest for a New Insulation Gas with a Low Impact on the Environment to Replace Sulfur Hexafluoride (SF 6 ) Gas in High-Voltage Power Network Applications," Energies, MDPI, vol. 10(8), pages 1-20, August.
    2. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    2. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    3. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    4. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    5. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    6. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    7. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    8. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    9. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    10. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    11. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    14. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    15. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    16. Francesca Simeoni & Veronica De Crescenzo, 2018. "Ecomuseums (on Clean Energy), Cycle Tourism and Civic Crowdfunding: A New Match for Sustainability?," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    17. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    18. Sánchez, M. & Clifford, B. & Nixon, J.D., 2018. "Modelling and evaluating a solar pyrolysis system," Renewable Energy, Elsevier, vol. 116(PA), pages 630-638.
    19. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    20. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3698-:d:579031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.