IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p15-d466467.html
   My bibliography  Save this article

Numerical Investigation and Multi-Objective Optimization of Internal EGR and Post-Injection Strategies on the Combustion, Emission and Performance of a Single Cylinder, Heavy-Duty Diesel Engine

Author

Listed:
  • Volkan Akgül

    (Internal Combustion Engines Laboratory, Mechanical Engineering Department, Yıldız Technical University, 34349 İstanbul, Turkey)

  • Orkun Özener

    (Internal Combustion Engines Laboratory, Mechanical Engineering Department, Yıldız Technical University, 34349 İstanbul, Turkey)

  • Cihan Büyük

    (TÜMOSAN Engine and Tractor Co., 34010 İstanbul, Turkey)

  • Muammer Özkan

    (Internal Combustion Engines Laboratory, Mechanical Engineering Department, Yıldız Technical University, 34349 İstanbul, Turkey)

Abstract

This work presents a numerical study that investigates the optimum post-injection strategy and internal exhaust gas recirculation (iEGR) application with intake valve re-opening (2IVO) aiming to optimize the brake specific nitric oxide ( bs NO) and brake specific soot ( bs Soot) trade-off with reasonable brake specific fuel consumption (BSFC) via 1D engine cycle simulation. For model validation, single and post-injection test results obtained from a heavy-duty single cylinder diesel research engine were used. Then, the model was modified for 2IVO application. Following the simulations performed based on Latin hypercube DoE; BSFC, bs NO and bs Soot response surfaces trained by feedforward neural network were generated as a function of the injection (start of main injection, post-injection quantity, post-injection dwell time) and iEGR (2IVO dwell) parameters. After examining the effect of each parameter on pollutant emission and engine performance, multi-objective pareto optimization was performed to obtain pareto optimum solutions in the BSFC- bs NO- bs Soot space for 8.47 bar brake mean effective pressure (BMEP) load and 1500 rpm speed condition. The results show that iEGR and post-injection can significantly reduce NO and soot emissions, respectively. The soot oxidation capability of post-injection comes out only if it is not too close to the main injection and its efficiency and effective timing are substantially affected by iEGR rate and main injection timing. It could also be inferred that by the combination of iEGR and post-injection, NO and soot could be reduced simultaneously with a reasonable increase in BSFC if start of main injection is phased properly.

Suggested Citation

  • Volkan Akgül & Orkun Özener & Cihan Büyük & Muammer Özkan, 2020. "Numerical Investigation and Multi-Objective Optimization of Internal EGR and Post-Injection Strategies on the Combustion, Emission and Performance of a Single Cylinder, Heavy-Duty Diesel Engine," Energies, MDPI, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:15-:d:466467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Sangjun & Cho, Jungkeun & Park, Jungsoo & Song, Soonho, 2017. "Numerical study of the performance and NOx emission of a diesel-methanol dual-fuel engine using multi-objective Pareto optimization," Energy, Elsevier, vol. 124(C), pages 272-283.
    2. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    3. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    2. Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
    3. Sarjiya, & Budi, Rizki Firmansyah Setya & Hadi, Sasongko Pramono, 2019. "Game theory for multi-objective and multi-period framework generation expansion planning in deregulated markets," Energy, Elsevier, vol. 174(C), pages 323-330.
    4. Wenyu Gu & Wanhua Su, 2023. "Study on the Effects of Exhaust Gas Recirculation and Fuel Injection Strategy on Transient Process Performance of Diesel Engines," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    5. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    6. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    7. Mohan, Balaji & Yang, Wenming & Yu, Wenbin & Tay, Kun Lin & Chou, Siaw Kiang, 2015. "Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine," Applied Energy, Elsevier, vol. 160(C), pages 737-745.
    8. Ma, Baodong & Yao, Anren & Yao, Chunde & Wang, Wenchao & Ai, Youkai, 2021. "Numerical investigation and experimental validation on the leakage of methanol and formaldehyde in diesel methanol dual fuel engine with different valve overlap," Applied Energy, Elsevier, vol. 300(C).
    9. Olmeda, Pablo & Martín, Jaime & Novella, Ricardo & Carreño, Ricardo, 2015. "An adapted heat transfer model for engines with tumble motion," Applied Energy, Elsevier, vol. 158(C), pages 190-202.
    10. Sun, Yao & Yu, Xiumin & Dong, Wei & Chen, Hong & Hu, Yunfeng, 2018. "Effect of split injection on particle number (PN) emissions in GDI engine at fast-idle through integrated analysis of optics and mechanics," Energy, Elsevier, vol. 165(PB), pages 55-67.
    11. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    12. Martín, Jaime & Novella, Ricardo & García, Antonio & Carreño, Ricardo & Heuser, Benedikt & Kremer, Florian & Pischinger, Stefan, 2016. "Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode," Energy, Elsevier, vol. 115(P1), pages 1305-1319.
    13. Yu, Wenbin & Tay, Kunlin & Zhao, Feiyang & Yang, Wenming & Li, Han & Xu, Hongpeng, 2018. "Development of a new jet fuel surrogate and its associated reaction mechanism coupled with a multistep soot model for diesel engine combustion," Applied Energy, Elsevier, vol. 228(C), pages 42-56.
    14. Vedharaj, S. & Vallinayagam, R. & Yang, W.M. & Chou, S.K. & Lee, P.S., 2014. "Effect of adding 1,4-Dioxane with kapok biodiesel on the characteristics of a diesel engine," Applied Energy, Elsevier, vol. 136(C), pages 1166-1173.
    15. Payri, Francisco & López, José Javier & Martín, Jaime & Carreño, Ricardo, 2018. "Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration," Energy, Elsevier, vol. 152(C), pages 666-681.
    16. d’Ambrosio, S. & Ferrari, A., 2017. "Boot injection dynamics and parametrical analysis of boot shaped injections in low-temperature combustion diesel engines for the optimization of pollutant emissions and combustion noise," Energy, Elsevier, vol. 134(C), pages 420-437.
    17. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    18. Mohan, Balaji & Yang, Wenming & Yu, Wenbin, 2014. "Effect of internal nozzle flow and thermo-physical properties on spray characteristics of methyl esters," Applied Energy, Elsevier, vol. 129(C), pages 123-134.
    19. Seungmin Kim & Jaesam Sim & Youngsoo Cho & Back-Sub Sung & Jungsoo Park, 2021. "Numerical Study on the Performance and NOx Emission Characteristics of an 800cc MPI Turbocharged SI Engine," Energies, MDPI, vol. 14(21), pages 1-29, November.
    20. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:15-:d:466467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.