IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2211-d353486.html
   My bibliography  Save this article

Experimental and Computational Study of Thermal Processes in Red Clays Exposed to High Temperatures

Author

Listed:
  • Václav Kočí

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague 6, Czech Republic
    Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic)

  • Lenka Scheinherrová

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague 6, Czech Republic)

  • Jiří Maděra

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague 6, Czech Republic)

  • Martin Keppert

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague 6, Czech Republic)

  • Zbigniew Suchorab

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague 6, Czech Republic
    Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Grzegorz Łagód

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague 6, Czech Republic
    Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Robert Černý

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7/2077, 166 29 Prague 6, Czech Republic)

Abstract

Fired bricks represent one of the most popular building materials, of which production is still growing. Since the functional properties of bricks have reached their physical limits, the current development aims at an optimization of production procedures as it goes along with heavy environmental loads. This paper is focused on tailoring the firing procedure to optimize the energy demands. Dealing with five different clays, their heat storage properties are determined using inverse analysis of calorimetric data so that the measurement errors are reduced. Moreover, effective values incorporate the thermal processes that occur during firing. A simplified model of clay samples is then used to calculate the energy demands for reaching an optimal firing scheme. The results show that specific treatment is necessary for particular clays as the energy demands may range between 89 and 173 MJ·m −2 , depending on a clay composition. The highest demands were found in the case of clays containing the high volume of calcite and dolomite, of which thermal decomposition is very energy demanding. Using the tailored firing scheme, one can reach energy savings of up to 49% while the functional properties would be preserved due to maintaining the optimal temperature evolution in the brick body.

Suggested Citation

  • Václav Kočí & Lenka Scheinherrová & Jiří Maděra & Martin Keppert & Zbigniew Suchorab & Grzegorz Łagód & Robert Černý, 2020. "Experimental and Computational Study of Thermal Processes in Red Clays Exposed to High Temperatures," Energies, MDPI, vol. 13(9), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2211-:d:353486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyo Seon Park & Bongkeun Kwon & Yunah Shin & Yousok Kim & Taehoon Hong & Se Woon Choi, 2013. "Cost and CO 2 Emission Optimization of Steel Reinforced Concrete Columns in High-Rise Buildings," Energies, MDPI, vol. 6(11), pages 1-16, October.
    2. Ricardo S. Gomez & Túlio R. N. Porto & Hortência L. F. Magalhães & Gicelia Moreira & Anastácia M. M. C. N. André & Ruth B. F. Melo & Antonio G. B. Lima, 2019. "Natural Gas Intermittent Kiln for the Ceramic Industry: A Transient Thermal Analysis," Energies, MDPI, vol. 12(8), pages 1-29, April.
    3. Ákos Lakatos & Anton Trník, 2020. "Thermal Diffusion in Fibrous Aerogel Blankets," Energies, MDPI, vol. 13(4), pages 1-9, February.
    4. Anna Laura Pisello & Claudia Fabiani & Nastaran Makaremi & Veronica Lucia Castaldo & Gianluca Cavalaglio & Andrea Nicolini & Marco Barbanera & Franco Cotana, 2016. "Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-20, August.
    5. Kaya, Sinem & Mançuhan, Ebru & Küçükada, Kurtul, 2009. "Modelling and optimization of the firing zone of a tunnel kiln to predict the optimal feed locations and mass fluxes of the fuel and secondary air," Applied Energy, Elsevier, vol. 86(3), pages 325-332, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo S. Gomez & Kelly C. Gomes & José M. A. M. Gurgel & Laís B. Alves & Hortência L. F. Magalhães & Raíssa A. Queiroga & Gustavo C. P. Sousa & Aline S. Oliveira & Anderson F. Vilela & Bruna T. A. S, 2023. "Investigating the Drying Process of Ceramic Sanitary Ware at Low Temperature," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    2. Milani, M. & Montorsi, L. & Venturelli, M. & Tiscar, J.M. & García-Ten, J., 2019. "A numerical approach for the combined analysis of the dynamic thermal behaviour of an entire ceramic roller kiln and the stress formation in the tiles," Energy, Elsevier, vol. 177(C), pages 543-553.
    3. Gebrail Bekdaş & Sinan Melih Nigdeli & Sanghun Kim & Zong Woo Geem, 2022. "Modified Harmony Search Algorithm-Based Optimization for Eco-Friendly Reinforced Concrete Frames," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    4. Seungho Cho & Seunguk Na, 2017. "The Reduction of CO 2 Emissions by Application of High-Strength Reinforcing Bars to Three Different Structural Systems in South Korea," Sustainability, MDPI, vol. 9(9), pages 1-24, September.
    5. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Novel predictive tools for design of radiant and convective sections of direct fired heaters," Applied Energy, Elsevier, vol. 87(7), pages 2194-2202, July.
    6. Xiaoqian Cen & Qingyuan Wang & Xiaoshuang Shi & Yan Su & Jingsi Qiu, 2019. "Optimization of Concrete Mixture Design Using Adaptive Surrogate Model," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    7. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    8. A.M. Vasconcelos da Silva & J.M.P.Q. Delgado & A.S. Guimarães & W.M.P. Barbosa de Lima & R. Soares Gomez & R. Pereira de Farias & E. Santana de Lima & A.G. Barbosa de Lima, 2020. "Industrial Ceramic Blocks for Buildings: Clay Characterization and Drying Experimental Study," Energies, MDPI, vol. 13(11), pages 1-22, June.
    9. Xiao-Yong Wang, 2019. "Effect of Carbon Pricing on Optimal Mix Design of Sustainable High-Strength Concrete," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    10. Francesco Boenzi & Joaquín Ordieres-Meré & Raffaello Iavagnilio, 2019. "Life Cycle Assessment Comparison of Two Refractory Brick Product Systems for Ladle Lining in Secondary Steelmaking," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    11. Jan Kočí & Robert Černý, 2020. "Special Issue “Recent Developments in Building Physics”," Energies, MDPI, vol. 13(23), pages 1-3, December.
    12. Iván D. Palacio-Caro & Pedro N. Alvarado-Torres & Luis F. Cardona-Sepúlveda, 2020. "Numerical Simulation of the Flow and Heat Transfer in an Electric Steel Tempering Furnace," Energies, MDPI, vol. 13(14), pages 1-22, July.
    13. Iman Faridmehr & Moncef L. Nehdi & Mehdi Nikoo & Kiyanets A. Valerievich, 2021. "Predicting Embodied Carbon and Cost Effectiveness of Post-Tensioned Slabs Using Novel Hybrid Firefly ANN," Sustainability, MDPI, vol. 13(21), pages 1-30, November.
    14. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2211-:d:353486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.