IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1321-d331641.html
   My bibliography  Save this article

Privacy-Preserving Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids Using Functional Encryption

Author

Listed:
  • Ye-Byoul Son

    (Department of Computer Engineering, Inha University, Incheon 22212, Korea)

  • Jong-Hyuk Im

    (Department of Computer Engineering, Inha University, Incheon 22212, Korea)

  • Hee-Yong Kwon

    (Department of Computer Engineering, Inha University, Incheon 22212, Korea)

  • Seong-Yun Jeon

    (Department of Computer Engineering, Inha University, Incheon 22212, Korea)

  • Mun-Kyu Lee

    (Department of Computer Engineering, Inha University, Incheon 22212, Korea)

Abstract

Advanced smart grid technologies enable energy prosumers to trade surplus energy from their distributed renewable energy sources with other peer prosumers through peer-to-peer (P2P) energy trading. In many previous works, P2P energy trading was facilitated by blockchain technology through blockchain’s distributive nature and capacity to run smart contracts. However, the feature that all the data and transactions on a blockchain are visible to all blockchain nodes may significantly threaten the privacy of the parties participating in P2P energy trading. There are many previous works that have attempted to mitigate this problem. However, all these works focused on the anonymity of participants but did not protect the data and transactions. To address this issue, we propose a P2P energy trading system on a blockchain where all bids are encrypted and peer matching is performed on the encrypted bids by a functional encryption-based smart contract. The system guarantees that the information encoded in the encrypted bids is protected, but the peer matching transactions are performed by the nodes in a publicly verifiable manner through smart contracts. We verify the feasibility of the proposed system by implementing a prototype composed of smart meters, a distribution system operator (DSO) server, and private Ethereum blockchain.

Suggested Citation

  • Ye-Byoul Son & Jong-Hyuk Im & Hee-Yong Kwon & Seong-Yun Jeon & Mun-Kyu Lee, 2020. "Privacy-Preserving Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids Using Functional Encryption," Energies, MDPI, vol. 13(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1321-:d:331641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Fell & Alexandra Schneiders & David Shipworth, 2019. "Consumer Demand for Blockchain-Enabled Peer-to-Peer Electricity Trading in the United Kingdom: An Online Survey Experiment," Energies, MDPI, vol. 12(20), pages 1-25, October.
    2. Juhar Abdella & Khaled Shuaib, 2018. "Peer to Peer Distributed Energy Trading in Smart Grids: A Survey," Energies, MDPI, vol. 11(6), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    2. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    3. Bogdan-Constantin Neagu & Ovidiu Ivanov & Gheorghe Grigoras & Mihai Gavrilas & Dumitru-Marcel Istrate, 2020. "New Market Model with Social and Commercial Tiers for Improved Prosumer Trading in Microgrids," Sustainability, MDPI, vol. 12(18), pages 1-43, September.
    4. Chathurangi Edussuriya & Umar Marikkar & Subash Wickramasinghe & Upul Jayasinghe & Janaka Alawatugoda, 2023. "Peer-to-Peer Energy Trading through Swarm Intelligent Stackelberg Game," Energies, MDPI, vol. 16(5), pages 1-17, March.
    5. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    6. Khuram Shahzad & Sohail Iqbal & Hamid Mukhtar, 2021. "Optimal Fuzzy Energy Trading System in a Fog-Enabled Smart Grid," Energies, MDPI, vol. 14(4), pages 1-16, February.
    7. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    9. Min Hong & Xiaolei Wang & Zhenghui Li, 2022. "Will Oil Price Volatility Cause Market Panic?," Energies, MDPI, vol. 15(13), pages 1-17, June.
    10. Daniel Sousa-Dias & Daniel Amyot & Ashkan Rahimi-Kian & John Mylopoulos, 2023. "A Review of Cybersecurity Concerns for Transactive Energy Markets," Energies, MDPI, vol. 16(13), pages 1-32, June.
    11. Mohamed S. Abdalzaher & Mostafa M. Fouda & Mohamed I. Ibrahem, 2022. "Data Privacy Preservation and Security in Smart Metering Systems," Energies, MDPI, vol. 15(19), pages 1-19, October.
    12. Danalakshmi D. & Gopi R. & A. Hariharasudan & Iwona Otola & Yuriy Bilan, 2020. "Reactive Power Optimization and Price Management in Microgrid Enabled with Blockchain," Energies, MDPI, vol. 13(23), pages 1-20, November.
    13. Manuel Casquiço & Bruno Mataloto & Joao C. Ferreira & Vitor Monteiro & Joao L. Afonso & Jose A. Afonso, 2021. "Blockchain and Internet of Things for Electrical Energy Decentralization: A Review and System Architecture," Energies, MDPI, vol. 14(23), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    2. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    3. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    4. Ricardo Moreno & Cristian Hoyos & Sergio Cantillo, 2021. "A Framework from Peer-to-Peer Electricity Trading Based on Communities Transactions," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 537-545.
    5. Temitayo O. Olowu & Aditya Sundararajan & Masood Moghaddami & Arif I. Sarwat, 2018. "Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey," Energies, MDPI, vol. 11(7), pages 1-32, July.
    6. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    7. Pablo Baez-Gonzalez & Felix Garcia-Torres & Miguel A. Ridao & Carlos Bordons, 2020. "A Stochastic MPC Based Energy Management System for Simultaneous Participation in Continuous and Discrete Prosumer-to-Prosumer Energy Markets," Energies, MDPI, vol. 13(14), pages 1-23, July.
    8. Arun S. Loganathan & Vijayapriya Ramachandran & Angalaeswari Sendraya Perumal & Seshathiri Dhanasekaran & Natrayan Lakshmaiya & Prabhu Paramasivam, 2022. "Framework of Transactive Energy Market Strategies for Lucrative Peer-to-Peer Energy Transactions," Energies, MDPI, vol. 16(1), pages 1-16, December.
    9. Alexandros-Georgios Chronis & Foivos Palaiogiannis & Iasonas Kouveliotis-Lysikatos & Panos Kotsampopoulos & Nikos Hatziargyriou, 2021. "Photovoltaics Enabling Sustainable Energy Communities: Technological Drivers and Emerging Markets," Energies, MDPI, vol. 14(7), pages 1-21, March.
    10. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    11. Uyikumhe Damisa & Peter Olabisi Oluseyi & Nnamdi Ikechi Nwulu, 2022. "Blockchain-Based Gas Auctioning Coupled with a Novel Economic Dispatch Formulation for Gas-Deficient Thermal Plants," Energies, MDPI, vol. 15(14), pages 1-13, July.
    12. Samende, Cephas & Cao, Jun & Fan, Zhong, 2022. "Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints," Applied Energy, Elsevier, vol. 317(C).
    13. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    14. Watson, Nicole Elizabeth & Huebner, Gesche & Fell, Michael James & Shipworth, David, 2020. "Two energy suppliers are better than one: survey experiments on consumer engagement with local energy in GB," SocArXiv e9nyu, Center for Open Science.
    15. Daishi Sagawa & Kenji Tanaka & Fumiaki Ishida & Hideya Saito & Naoya Takenaga & Seigo Nakamura & Nobuaki Aoki & Misuzu Nameki & Kosuke Saegusa, 2021. "Bidding Agents for PV and Electric Vehicle-Owning Users in the Electricity P2P Trading Market," Energies, MDPI, vol. 14(24), pages 1-17, December.
    16. Uyikumhe Damisa & Nnamdi I. Nwulu & Pierluigi Siano, 2022. "Towards Blockchain-Based Energy Trading: A Smart Contract Implementation of Energy Double Auction and Spinning Reserve Trading," Energies, MDPI, vol. 15(11), pages 1-16, June.
    17. Gangjun Gong & Zhening Zhang & Xinyu Zhang & Nawaraj Kumar Mahato & Lin Liu & Chang Su & Haixia Yang, 2020. "Electric Power System Operation Mechanism with Energy Routers Based on QoS Index under Blockchain Architecture," Energies, MDPI, vol. 13(2), pages 1-22, January.
    18. Sara Hebal & Djamila Mechta & Saad Harous & Mohammed Dhriyyef, 2021. "Hybrid Energy Routing Approach for Energy Internet," Energies, MDPI, vol. 14(9), pages 1-34, April.
    19. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Hahnel, Ulf J.J. & Fell, Michael J., 2022. "Pricing decisions in peer-to-peer and prosumer-centred electricity markets: Experimental analysis in Germany and the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1321-:d:331641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.