IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p815-d320275.html
   My bibliography  Save this article

MPPT of a Photovoltaic Panels Array with Partial Shading Using the IPSM with Implementation Both in Simulation as in Hardware

Author

Listed:
  • Andrés Tobón

    (Departamento de Electrónica y Telecomunicaciones, Facultad de Ingenierías, Instituto Tecnológico Metropolitano, 050035 Medellín, Antioquia, Colombia)

  • Julián Peláez-Restrepo

    (Departamento de Electrónica y Telecomunicaciones, Facultad de Ingenierías, Instituto Tecnológico Metropolitano, 050035 Medellín, Antioquia, Colombia)

  • Jhon Montano

    (Departamento de Electrónica y Telecomunicaciones, Facultad de Ingenierías, Instituto Tecnológico Metropolitano, 050035 Medellín, Antioquia, Colombia)

  • Mariana Durango

    (Departamento de Electrónica y Telecomunicaciones, Facultad de Ingenierías, Instituto Tecnológico Metropolitano, 050035 Medellín, Antioquia, Colombia)

  • Jorge Herrera

    (Departamento de Ingeniería, Facultad de Ciencias Naturales e Ingeniería, Universidad de Bogotá Jorge Tadeo Lozano, 110311 Bogotá, Distrito Capital, Colombia)

  • Asier Ibeas

    (Departamento de Ingeniería, Facultad de Ciencias Naturales e Ingeniería, Universidad de Bogotá Jorge Tadeo Lozano, 110311 Bogotá, Distrito Capital, Colombia
    Department of Telecommunications and Systems Engineering, Universitat Autónoma de Barcelona (UAB), 08193 Bellaterra, Cerdanyola del Vallés, 08193 Barcelona, Spain)

Abstract

This article presents a method for the Maximum Power Point Tracking (MPPT) of a Photovoltaic (PV) panels array with partial shading, applying an Improved Pattern Search Method (IPSM). The method is simulated in PSIM @ and then implemented in hardware in the loop system, emulating the PV array on an industrial computer (Speedgoat) that allows real-time emulations and the IPSM is applied in an Arduino DUE. The experiments were carried out with TP245S-20/WD, KYOCERA KC200GT, YINGLY SOLAR JS65, and MSX60 photovoltaic panels. The results are the proper MPPT with changes in partial shading over time, inducing the increase and decrease of the maximum power point. The results obtained are the search for the global maximum power point in a matrix of panels in which, due to partial shading, it might have several local maximum power points, and thanks to the IPSM algorithm, it always manages to find the global maximum power point. Finally, the results are compared with other methods where it was found that IPSM had faster answers.

Suggested Citation

  • Andrés Tobón & Julián Peláez-Restrepo & Jhon Montano & Mariana Durango & Jorge Herrera & Asier Ibeas, 2020. "MPPT of a Photovoltaic Panels Array with Partial Shading Using the IPSM with Implementation Both in Simulation as in Hardware," Energies, MDPI, vol. 13(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:815-:d:320275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Du & Ke Yan & Zixiao Ren & Weidong Xiao, 2018. "Designing Localized MPPT for PV Systems Using Fuzzy-Weighted Extreme Learning Machine," Energies, MDPI, vol. 11(10), pages 1-10, October.
    2. Andrés Tobón & Julián Peláez-Restrepo & Juan P. Villegas-Ceballos & Sergio Ignacio Serna-Garcés & Jorge Herrera & Asier Ibeas, 2017. "Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods," Energies, MDPI, vol. 10(9), pages 1-15, September.
    3. Xiaoguang Liu & Yuefeng Wang, 2019. "Reconfiguration Method to Extract More Power from Partially Shaded Photovoltaic Arrays with Series-Parallel Topology," Energies, MDPI, vol. 12(8), pages 1-16, April.
    4. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    5. Manel Hammami & Gabriele Grandi, 2017. "A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm," Energies, MDPI, vol. 10(12), pages 1-19, December.
    6. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    7. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    8. Chao, Kuei-Hsiang & Lin, Yu-Sheng & Lai, Uei-Dar, 2015. "Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays," Applied Energy, Elsevier, vol. 158(C), pages 609-618.
    9. de la Parra, I. & Muñoz, M. & Lorenzo, E. & García, M. & Marcos, J. & Martínez-Moreno, F., 2017. "PV performance modelling: A review in the light of quality assurance for large PV plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 780-797.
    10. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    11. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2019. "Improvement of MPPT Control Performance Using Fuzzy Control and VGPI in the PV System for Micro Grid," Sustainability, MDPI, vol. 11(21), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long-Yi Chang & Yi-Nung Chung & Kuei-Hsiang Chao & Jia-Jing Kao, 2018. "Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays," Energies, MDPI, vol. 11(3), pages 1-16, March.
    2. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    3. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Diego R. Espinoza Trejo & Ernesto Bárcenas & José E. Hernández Díez & Guillermo Bossio & Gerardo Espinosa Pérez, 2018. "Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    5. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    6. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    7. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    8. Xiaoguang Liu & Yuefeng Wang, 2019. "Reconfiguration Method to Extract More Power from Partially Shaded Photovoltaic Arrays with Series-Parallel Topology," Energies, MDPI, vol. 12(8), pages 1-16, April.
    9. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    10. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    11. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    12. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, vol. 11(7), pages 1-24, July.
    13. Zahra Bel Hadj Salah & Saber Krim & Mohamed Ali Hajjaji & Badr M. Alshammari & Khalid Alqunun & Ahmed Alzamil & Tawfik Guesmi, 2023. "A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System," Sustainability, MDPI, vol. 15(12), pages 1-38, June.
    14. Rezk, Hegazy & Fathy, Ahmed & Abdelaziz, Almoataz Y., 2017. "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 377-386.
    15. Julie Viloria-Porto & Carlos Robles-Algarín & Diego Restrepo-Leal, 2018. "A Novel Approach for an MPPT Controller Based on the ADALINE Network Trained with the RTRL Algorithm," Energies, MDPI, vol. 11(12), pages 1-17, December.
    16. Mohamed Louzazni & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2020. "Management and Performance Control Analysis of Hybrid Photovoltaic Energy Storage System under Variable Solar Irradiation," Energies, MDPI, vol. 13(12), pages 1-23, June.
    17. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    18. Mostafa Ahmed & Ibrahim Harbi & Ralph Kennel & José Rodríguez & Mohamed Abdelrahem, 2022. "Evaluation of the Main Control Strategies for Grid-Connected PV Systems," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    19. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    20. Azhar Ul-Haq & Shah Fahad & Saba Gul & Rui Bo, 2023. "Intelligent Control Schemes for Maximum Power Extraction from Photovoltaic Arrays under Faults," Energies, MDPI, vol. 16(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:815-:d:320275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.