IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3407-d188043.html
   My bibliography  Save this article

A Novel Approach for an MPPT Controller Based on the ADALINE Network Trained with the RTRL Algorithm

Author

Listed:
  • Julie Viloria-Porto

    (Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470003, Colombia)

  • Carlos Robles-Algarín

    (Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470003, Colombia)

  • Diego Restrepo-Leal

    (Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470003, Colombia)

Abstract

The Real-Time Recurrent Learning Gradient (RTRL) algorithm is characterized by being an online learning method for training dynamic recurrent neural networks, which makes it ideal for working with non-linear control systems. For this reason, this paper presents the design of a novel Maximum Power Point Tracking (MPPT) controller with an artificial neural network type Adaptive Linear Neuron (ADALINE), with Finite Impulse Response (FIR) architecture, trained with the RTRL algorithm. With this same network architecture, the Least Mean Square (LMS) algorithm was developed to evaluate the results obtained with the RTRL controller and then make comparisons with the Perturb and Observe (P&O) algorithm. This control method receives as input signals the current and voltage of a photovoltaic module under sudden changes in operating conditions. Additionally, the efficiency of the controllers was appraised with a fuzzy controller and a Nonlinear Autoregressive Network with Exogenous Inputs (NARX) controller, which were developed in previous investigations. It was concluded that the RTRL controller with adaptive training has better results, a faster response, and fewer bifurcations due to sudden changes in the input signals, being the ideal control method for systems that require a real-time response.

Suggested Citation

  • Julie Viloria-Porto & Carlos Robles-Algarín & Diego Restrepo-Leal, 2018. "A Novel Approach for an MPPT Controller Based on the ADALINE Network Trained with the RTRL Algorithm," Energies, MDPI, vol. 11(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3407-:d:188043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    2. Syed Zulqadar Hassan & Hui Li & Tariq Kamal & Uğur Arifoğlu & Sidra Mumtaz & Laiq Khan, 2017. "Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
    3. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    4. Amir, A. & Amir, A. & Selvaraj, J. & Rahim, N.A., 2016. "Study of the MPP tracking algorithms: Focusing the numerical method techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 350-371.
    5. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    6. Vieira, R.G. & Guerra, F.K.O.M.V. & Vale, M.R.B.G. & Araújo, M.M., 2016. "Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 672-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marwen Bjaoui & Brahim Khiari & Ridha Benadli & Mouad Memni & Anis Sellami, 2019. "Practical Implementation of the Backstepping Sliding Mode Controller MPPT for a PV-Storage Application," Energies, MDPI, vol. 12(18), pages 1-22, September.
    2. Nalini Karchi & Deepak Kulkarni & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Sujata N. Patil & Veena Desai, 2022. "Adaptive Least Mean Square Controller for Power Quality Enhancement in Solar Photovoltaic System," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    2. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.
    3. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    4. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    5. Andrés Tobón & Julián Peláez-Restrepo & Jhon Montano & Mariana Durango & Jorge Herrera & Asier Ibeas, 2020. "MPPT of a Photovoltaic Panels Array with Partial Shading Using the IPSM with Implementation Both in Simulation as in Hardware," Energies, MDPI, vol. 13(4), pages 1-17, February.
    6. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    7. Grażyna Frydrychowicz-Jastrzębska & Artur Bugała, 2021. "Solar Tracking System with New Hybrid Control in Energy Production Optimization from Photovoltaic Conversion for Polish Climatic Conditions," Energies, MDPI, vol. 14(10), pages 1-26, May.
    8. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    9. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    10. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    13. Long-Yi Chang & Yi-Nung Chung & Kuei-Hsiang Chao & Jia-Jing Kao, 2018. "Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays," Energies, MDPI, vol. 11(3), pages 1-16, March.
    14. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    15. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    16. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    17. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    18. Andrés Tobón & Julián Peláez-Restrepo & Juan P. Villegas-Ceballos & Sergio Ignacio Serna-Garcés & Jorge Herrera & Asier Ibeas, 2017. "Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods," Energies, MDPI, vol. 10(9), pages 1-15, September.
    19. Diego R. Espinoza Trejo & Ernesto Bárcenas & José E. Hernández Díez & Guillermo Bossio & Gerardo Espinosa Pérez, 2018. "Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    20. Triet Nguyen-Van & Rikiya Abe & Kenji Tanaka, 2018. "MPPT and SPPT Control for PV-Connected Inverters Using Digital Adaptive Hysteresis Current Control," Energies, MDPI, vol. 11(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3407-:d:188043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.