IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p795-d319511.html
   My bibliography  Save this article

Rhodotorula toruloides Single Cell Oil Production Using Eucalyptus urograndis Hemicellulose Hydrolysate as a Carbon Source

Author

Listed:
  • Helberth Júnnior Santos Lopes

    (Department of Materials and Bioprocess Engineering, School of Chemical Engineering, State University of Campinas, Campinas SP 13083-852, Brazil)

  • Nemailla Bonturi

    (Institute of Technology, University of Tartu, 50411 Tartu, Estonia)

  • Everson Alves Miranda

    (Department of Materials and Bioprocess Engineering, School of Chemical Engineering, State University of Campinas, Campinas SP 13083-852, Brazil)

Abstract

Microbial oil is a potential substitute for vegetable oils in the biodiesel industry. Efforts to obtain cheap carbon sources for the cultivation of lipid-producing microorganisms comprise an active research area. This work aimed to extract the hemicellulose fraction from Eucalyptus uograndis and to use its hydrolysate as a carbon source for Rhodotorula toruloides (an oleaginous yeast) cultivation for microbial oil production. Hemicellulose hydrothermal extractions were performed at different temperatures, times, and ratios of solid to liquid (S/L). Temperature and time showed a stronger effect on the solubilization of hemicellulose. Hemicellulose extraction at 155 °C, 195 min, and an S/L ratio of 1/2 resulted in a hydrolysate with a xylose content of 37.0 g/l. R. toruloides cultivation in this hydrolysate showed that initial pH had a strong influence on cell growth. At an initial pH of 6.2, cells grew to 6.0 g/l of biomass with a lipid content of 50%. Therefore, we believe that E. urograndis hemicellulose hydrolysate could be a potential substrate for R. toruloides for lipid production based on the biorefinery concept.

Suggested Citation

  • Helberth Júnnior Santos Lopes & Nemailla Bonturi & Everson Alves Miranda, 2020. "Rhodotorula toruloides Single Cell Oil Production Using Eucalyptus urograndis Hemicellulose Hydrolysate as a Carbon Source," Energies, MDPI, vol. 13(4), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:795-:d:319511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silva, F.T.M. & Ataíde, C.H., 2019. "Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization," Energy, Elsevier, vol. 172(C), pages 509-516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Ji & Pengfei Li & Fuhou Lei & Xianliang Song & Jianxin Jiang & Kun Wang, 2020. "Coproduction of Furfural, Phenolated Lignin and Fermentable Sugars from Bamboo with One-Pot Fractionation Using Phenol-Acidic 1,4-Dioxane," Energies, MDPI, vol. 13(20), pages 1-17, October.
    2. Erminta Tsouko & Eirini Tolia & Dimitris Sarris, 2023. "Microbial Melanin: Renewable Feedstock and Emerging Applications in Food-Related Systems," Sustainability, MDPI, vol. 15(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antão Rodrigo Valentim & Jhon Ramírez Behainne & Aldo Braghini Junior, 2022. "Thermal Performance Analysis of Materials and Configurations for Cylindrical Sidewalls of Charcoal Kilns," Energies, MDPI, vol. 15(16), pages 1-21, August.
    2. de Paula Protásio, Thiago & Roque Lima, Michael Douglas & Scatolino, Mário Vanoli & Silva, Alanna Barishinikov & Rodrigues de Figueiredo, Izabel Cristina & Gherardi Hein, Paulo Ricardo & Trugilho, Pau, 2021. "Charcoal productivity and quality parameters for reliable classification of Eucalyptus clones from Brazilian energy forests," Renewable Energy, Elsevier, vol. 164(C), pages 34-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:795-:d:319511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.