IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p506-d311152.html
   My bibliography  Save this article

Growth and Production of Lipids in Raphidocelis subcapitata Immobilized in Sodium Alginate Beads

Author

Listed:
  • Amel Benasla

    (Station Expérimentale des Procédés Pilotes en Environnement, École de Technologie Supérieure, Université du Québec, 1100, rue Notre-Dame Ouest Local A-1500, Montréal, QC H3C 1K3, Canada)

  • Robert Hausler

    (Station Expérimentale des Procédés Pilotes en Environnement, École de Technologie Supérieure, Université du Québec, 1100, rue Notre-Dame Ouest Local A-1500, Montréal, QC H3C 1K3, Canada)

Abstract

The growth and production of lipids in the green microalga Raphidocelis subcapitata immobilized in alginate gel are studied. The beads are made from alginate (2% w / v ) and CaCl 2 (1% w / v ). The dry weight, the concentration of cells, and the lipid content are determined after dissolution of the beads in a sodium phosphate buffer. The results show that variations in biomass do not reflect variations in the number of cells in R. subcapitata . Cells divide more rapidly (G c = 3.45 ± 0.3 days) than biomass is produced (G m = 4.1 ± 0.4 days) during the exponential growth phase. Therefore, the average mass of the immobilized cells decreases until it reaches its minimum at the end of the exponential phase. Thus, during the stationary phase, cell division ceases while biomass production continues, and the average mass of the immobilized cells increases. In the present study, it is shown that this increase is due to the accumulation of lipids following the depletion of nitrates and phosphates in the culture medium. A lipid content of 24.7 ± 2.5% (dcw) and a lipid productivity of LP = 29.8 ± 3.0 mg/L/day are recorded at the end of culture. These results suggest that immobilized R. subcapitata has promising potential for biodiesel production.

Suggested Citation

  • Amel Benasla & Robert Hausler, 2020. "Growth and Production of Lipids in Raphidocelis subcapitata Immobilized in Sodium Alginate Beads," Energies, MDPI, vol. 13(2), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:506-:d:311152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Pires & A. Gonçalves & F. Martins & M. Alvim-Ferraz & M. Simões, 2014. "Effect of light supply on CO 2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1109-1117, October.
    2. Khan, Shakeel A. & Rashmi & Hussain, Mir Z. & Prasad, S. & Banerjee, U.C., 2009. "Prospects of biodiesel production from microalgae in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2361-2372, December.
    3. Martin Olofsson & Teresa Lamela & Emmelie Nilsson & Jean Pascal Bergé & Victória Del Pino & Pauliina Uronen & Catherine Legrand, 2012. "Seasonal Variation of Lipids and Fatty Acids of the Microalgae Nannochloropsis oculata Grown in Outdoor Large-Scale Photobioreactors," Energies, MDPI, vol. 5(5), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    2. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    3. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    4. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    5. H. Chanakya & Durga Mahapatra & R. Sarada & R. Abitha, 2013. "Algal biofuel production and mitigation potential in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 113-136, January.
    6. Li, Yuan-Guang & Xu, Ling & Huang, Ying-Ming & Wang, Feng & Guo, Chen & Liu, Chun-Zhao, 2011. "Microalgal biodiesel in China: Opportunities and challenges," Applied Energy, Elsevier, vol. 88(10), pages 3432-3437.
    7. Bagchi, Sourav Kumar & Patnaik, Reeza & Sonkar, Sashi & Koley, Shankha & Rao, P. Srinivasa & Mallick, Nirupama, 2019. "Qualitative biodiesel production from a locally isolated chlorophycean microalga Scenedesmus obliquus (Turpin) Kützing GA 45 under closed raceway pond cultivation," Renewable Energy, Elsevier, vol. 139(C), pages 976-987.
    8. Huynh, Linh & Hoang, Hien & Tran, Hung, 2020. "Does FDI enhance provincial productivity? A panel data analysis in Vietnam," MPRA Paper 117620, University Library of Munich, Germany, revised Aug 2021.
    9. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    10. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    11. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    12. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    13. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    14. Khan, Shakeel A. & Malla, Fayaz A. & Rashmi, & Malav, Lal Chand & Gupta, Navindu & Kumar, Amit, 2018. "Potential of wastewater treating Chlorella minutissima for methane enrichment and CO2 sequestration of biogas and producing lipids," Energy, Elsevier, vol. 150(C), pages 153-163.
    15. Ramachandra, T.V. & Durga Madhab, Mahapatra & Shilpi, Samantray & Joshi, N.V., 2013. "Algal biofuel from urban wastewater in India: Scope and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 767-777.
    16. Ravindra Prasad & Sanjay Kumar Gupta & Nisha Shabnam & Carlos Yure B. Oliveira & Arvind Kumar Nema & Faiz Ahmad Ansari & Faizal Bux, 2021. "Role of Microalgae in Global CO 2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    17. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    18. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    19. Gnansounou, Edgard & Kenthorai Raman, Jegannathan, 2016. "Life cycle assessment of algae biodiesel and its co-products," Applied Energy, Elsevier, vol. 161(C), pages 300-308.
    20. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:506-:d:311152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.