IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6562-d461066.html
   My bibliography  Save this article

Femtosecond Laser-Induced Surface Modification of the Electrolyte in Solid Oxide Electrolysis Cells

Author

Listed:
  • Tobias Marquardt

    (Institute of Thermodynamics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany)

  • Jan Hollmann

    (Institute of Thermodynamics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany)

  • Thomas Gimpel

    (Research Center Energy Storage Technologies, Clausthal University of Technology, Am Stollen 19A, 38640 Goslar, Germany)

  • Wolfgang Schade

    (Research Center Energy Storage Technologies, Clausthal University of Technology, Am Stollen 19A, 38640 Goslar, Germany
    Fraunhofer Heinrich Hertz Institute, Am Stollen 19H, 38640 Goslar, Germany)

  • Stephan Kabelac

    (Institute of Thermodynamics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany)

Abstract

Electrolyte-supported solid oxide cells are often used for steam electrolysis. Advantages are high mechanical stability and a low degradation rate. The aim of this proof of concept study was to use a femtosecond laser to process the electrolyte of an electrolyte-supported solid oxide cell and evaluate the effect of this laser treatment on the electrochemical performance. The femtosecond laser treatment induces a macroscopic and a superimposed microscopic structure. It can be proven that the electrolyte remains gas tight and the electrochemical performance increases independently of the laser parameters. The initial area-specific resistance degradation during a constant current measurement of 200 h was reduced from 7.9% for a non-treated reference cell to 3.2% for one of the laser-treated cells. Based on electrochemical impedance measurements, it was found that the high frequency resistance of the laser-treated cells was reduced by up to 20% with respect to the reference cell. The impedance spectra were evaluated by calculating the distribution of relaxation times, and in advance, a novel approach was used to approximate the gas concentration resistance, which was related to the test setup and not to the cell. It was found that the low frequency polarization resistance was increased for the laser-treated cells. In total, the area-specific resistance of the laser-treated cells was reduced by up to 14%.

Suggested Citation

  • Tobias Marquardt & Jan Hollmann & Thomas Gimpel & Wolfgang Schade & Stephan Kabelac, 2020. "Femtosecond Laser-Induced Surface Modification of the Electrolyte in Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6562-:d:461066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    2. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    3. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    4. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    5. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    7. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    9. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    10. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    11. Zhao, Meng-Jie & He, Qian & Xiang, Ting & Ya, Hua-Qin & Luo, Hao & Wan, Shanhong & Ding, Jun & He, Jian-Bo, 2023. "Automatic operation of decoupled water electrolysis based on bipolar electrode," Renewable Energy, Elsevier, vol. 203(C), pages 583-591.
    12. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    13. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    14. Matteo Prussi & Lorenzo Laveneziana & Lorenzo Testa & David Chiaramonti, 2022. "Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports," Energies, MDPI, vol. 15(21), pages 1-17, October.
    15. Li, Yangyang & Deng, Xintao & Zhang, Tao & Liu, Shenghui & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao & Shen, Xiaojun, 2023. "Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system," Applied Energy, Elsevier, vol. 331(C).
    16. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.
    17. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    18. Philip Tafarte & Annedore Kanngießer & Martin Dotzauer & Benedikt Meyer & Anna Grevé & Markus Millinger, 2020. "Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions," Energies, MDPI, vol. 13(5), pages 1-25, March.
    19. Zheng, Yi & Wang, Jiawei & You, Shi & Li, Ximei & Bindner, Henrik W. & Münster, Marie, 2023. "Data-driven scheme for optimal day-ahead operation of a wind/hydrogen system under multiple uncertainties," Applied Energy, Elsevier, vol. 329(C).
    20. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6562-:d:461066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.