IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6385-d455467.html
   My bibliography  Save this article

Analysis of Thermal Parameters of Hemp Fiber Insulation

Author

Listed:
  • Baiba Gaujena

    (Faculty of Civil Engineering, Riga Technical University, 6B/6A Kipsalas Street, LV-1048 Riga, Latvia)

  • Vladislavs Agapovs

    (Faculty of Civil Engineering, Riga Technical University, 6B/6A Kipsalas Street, LV-1048 Riga, Latvia)

  • Anatolijs Borodinecs

    (Faculty of Civil Engineering, Riga Technical University, 6B/6A Kipsalas Street, LV-1048 Riga, Latvia)

  • Ksenia Strelets

    (Institute of Civil Engineering, Peter the Great St. Petersburg University, 195251 St. Petersburg, Russia)

Abstract

Nowadays, sustainable construction is a key factor for reaching net-zero emissions of carbon dioxide all over the world. This goal is impossible to achieve by merely reducing the energy consumption of end-users. A more holistic approach should be taken, adopting sustainable industrial practices that use environmentally friendly materials on a large scale. This paper presents the analysis of the hydrothermal properties of hemp thermal insulation plates. We carried out extensive measurements and the analysis of the thermal conductivity coefficient, drying-out dynamics, and water absorption. The study was performed with experimental insulation samples based on the fiber obtained from hemp stems, prepared using different adhesive powders. The dimensions of the analyzed samples were 300 × 300 mm. The proposed samples are not yet available in mass production. Hemp does not flower in the Baltic region and was traditionally used for soil regeneration. Thus, using this raw material increases the added value of agricultural residues. Three series of hemp fiber samples with different substances and pressing modes were evaluated in the study. Each set of samples consisted of four plates with varying thicknesses and two different densities: 200 kg/m 3 and 300 kg/m 3 . All samples exhibited a significant increase in moisture absorption and a strong correlation with the increase in thermal conductivity. The average thermal conductivity of the test samples ranged from 0.0544 to 0.0594 W/mK. The impact of the adhesive powder on the thermal conductivity was found to be extremely small. However, the values obtained were much higher than those for traditional thermal insulation materials, allowing to utilize the local agriculture residues and providing material for the construction of eco-friendly buildings.

Suggested Citation

  • Baiba Gaujena & Vladislavs Agapovs & Anatolijs Borodinecs & Ksenia Strelets, 2020. "Analysis of Thermal Parameters of Hemp Fiber Insulation," Energies, MDPI, vol. 13(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6385-:d:455467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Dylewski, 2019. "Optimal Thermal Insulation Thicknesses of External Walls Based on Economic and Ecological Heating Cost," Energies, MDPI, vol. 12(18), pages 1-14, September.
    2. Hans-Jörg Gusovius & Carsten Lühr & Thomas Hoffmann & Ralf Pecenka & Christine Idler, 2019. "An Alternative to Field Retting: Fibrous Materials Based on Wet Preserved Hemp for the Manufacture of Composites," Agriculture, MDPI, vol. 9(7), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Livia Cosentino & Jorge Fernandes & Ricardo Mateus, 2023. "A Review of Natural Bio-Based Insulation Materials," Energies, MDPI, vol. 16(12), pages 1-21, June.
    2. Ákos Lakatos, 2022. "Novel Thermal Insulation Materials for Buildings," Energies, MDPI, vol. 15(18), pages 1-4, September.
    3. Raluca Buzatu & Viorel Ungureanu & Adrian Ciutina & Mihăiţă Gireadă & Daniel Vitan & Ioan Petran, 2021. "Experimental Evaluation of Energy-Efficiency in a Holistically Designed Building," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Annibaldi & Federica Cucchiella & Marianna Rotilio, 2020. "A Sustainable Solution for Energy Efficiency in Italian Climatic Contexts," Energies, MDPI, vol. 13(11), pages 1-16, June.
    2. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    3. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Yurou Tong & Hui Yang & Li Bao & Baoxia Guo & Yanzhuo Shi & Congcong Wang, 2022. "Analysis of Thermal Insulation Thickness for a Container House in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    5. Robert Dylewski & Janusz Adamczyk, 2023. "Economic and Ecological Optimization of Thermal Insulation Depending on the Pre-Set Temperature in a Dwelling," Energies, MDPI, vol. 16(10), pages 1-13, May.
    6. Bożena Babiarz & Władysław Szymański, 2020. "Introduction to the Dynamics of Heat Transfer in Buildings," Energies, MDPI, vol. 13(23), pages 1-28, December.
    7. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    8. Dariusz Bajno & Agnieszka Grzybowska & Łukasz Bednarz, 2021. "Old and Modern Wooden Buildings in the Context of Sustainable Development," Energies, MDPI, vol. 14(18), pages 1-31, September.
    9. Robert Dylewski & Janusz Adamczyk, 2021. "Optimum Thickness of Thermal Insulation with Both Economic and Ecological Costs of Heating and Cooling," Energies, MDPI, vol. 14(13), pages 1-17, June.
    10. Robert Dylewski & Janusz Adamczyk, 2020. "Impact of the Degree Days of the Heating Period on Economically and Ecologically Optimal Thermal Insulation Thickness," Energies, MDPI, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6385-:d:455467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.