Author
Listed:
- Bernardino M. Rocha
(Department of Civil Engineering, Institute for Sustainability and Innovation in Engineering Structures (ISISE), University of Minho, Campus de Azurém, Av. da Universidade, 4800-058 Guimarães, Portugal)
- Marina Tenório
(Department of Civil Engineering, Institute for Sustainability and Innovation in Engineering Structures (ISISE), University of Minho, Campus de Azurém, Av. da Universidade, 4800-058 Guimarães, Portugal)
- Jorge M. Branco
(Department of Civil Engineering, Institute for Sustainability and Innovation in Engineering Structures (ISISE), University of Minho, Campus de Azurém, Av. da Universidade, 4800-058 Guimarães, Portugal)
- Sandra M. Silva
(Department of Civil Engineering, Institute for Sustainability and Innovation in Engineering Structures (ISISE), University of Minho, Campus de Azurém, Av. da Universidade, 4800-058 Guimarães, Portugal)
Abstract
The key objectives of both European Union and Portuguese policies are energy efficiency and carbon neutrality in the building sector. Timber construction offers unique advantages in achieving these goals, such as increased productivity through faster and more efficient building processes, using renewable resources with lower carbon emissions during production and throughout the lifecycle, and contributions to forest conservation. However, in many countries, timber construction remains underutilised due to concerns about its thermal and acoustic performance, fire safety, and limited availability of raw materials. This study addresses these challenges by evaluating the potential of various insulation materials, including polystyrenes, mineral wools, natural fibres, composites, and acoustic mats, for incorporation into prefabricated timber components. Key performance criteria included thermal insulation, sound absorption, fire reaction, environmental impact, and local availability. Among the materials analysed, glass wool, rock wool, and cork emerged as the most favourable options, offering excellent thermal and acoustic performance and presenting strong results in other key parameters. These findings underscore the potential of incorporating these materials into timber construction systems, contributing to developing sustainable and high-performance building solutions.
Suggested Citation
Bernardino M. Rocha & Marina Tenório & Jorge M. Branco & Sandra M. Silva, 2025.
"A Comprehensive Comparison of Insulation Materials for Timber Building Systems,"
Energies, MDPI, vol. 18(10), pages 1-32, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:10:p:2420-:d:1651684
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2420-:d:1651684. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.