IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6253-d452169.html
   My bibliography  Save this article

Robust Control of Shunt Active Power Filters: A Dynamical Model-Based Approach with Verified Controllability

Author

Listed:
  • Jorge-Humberto Urrea-Quintero

    (Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Nicolás Muñoz-Galeano

    (Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Jesús M. López-Lezama

    (Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia)

Abstract

This paper presents the robust control of Three-Leg Split-Capacitor Shunt Active Power Filters (TLSC SAPFs) by means of structured H ∞ controllers for reactive, unbalanced, and harmonic compensation and the DC-link bus voltage regulation. Robust controller synthesis is performed based on the TLSC SAPF dynamical model including power losses in passive elements. Before the control implementation, a systematic procedure for the nonlinear controllability verification of the converter and its quantification using the set-theoretic approach is presented. Controllability verification serves to accurately design the SAPF’s operation region. Thus, a Voltage Oriented Control (VOC) structure is implemented by using two different approaches to determine the PI controller parameters: (1) the traditional Pole-Placement method (PP-PI) and (2) the H ∞ -PI structured synthesis approach, which leads to PI robust controllers. From the latter approach, two sets of parameters are obtained. The first set considers the nominal model ( H ∞ -PI), and the second one explicitly accounts for the model parametric uncertainties ( H ∞ -uPI). An optimization procedure is presented for obtaining the optimal H ∞ -PI and H ∞ -uPI controller parameters where four complementary constrains are defined to establish a trade-off between the controllers performance and robustness. The enforcement of constraints is later evaluated for each of three PI controllers obtained. This work aims to establish a common ground for the comparison of robust control strategies applied to TLSC APFs; therefore, the TLSC SAPF compensation performance is measured and compared with the performance indices: integral of the absolute error ( I A E ), integral of the time-weighted absolute error ( I T A E ), integral of the absolute control action ( I U A ), and maximum sensitivity ( M s ).

Suggested Citation

  • Jorge-Humberto Urrea-Quintero & Nicolás Muñoz-Galeano & Jesús M. López-Lezama, 2020. "Robust Control of Shunt Active Power Filters: A Dynamical Model-Based Approach with Verified Controllability," Energies, MDPI, vol. 13(23), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6253-:d:452169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafi, Fida Hasan Md & Hossain, M.J. & Rahman, Md Shamiur & Taghizadeh, Seyedfoad, 2020. "An overview of unbalance compensation techniques using power electronic converters for active distribution systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Szromba, 2021. "Is It Possible to Obtain Benefits by Reducing the Contribution of the Digital Signal Processing Techniques to the Control of the Active Power Filter?," Energies, MDPI, vol. 14(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Hao & Pei, Wei & Deng, Wei & Ma, Tengfei & Zhang, Shizhong & Kong, Li, 2021. "Enhancing risk control ability of distribution network for improved renewable energy integration through flexible DC interconnection," Applied Energy, Elsevier, vol. 284(C).
    2. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    3. Riccardo Mandrioli & Francesco Lo Franco & Mattia Ricco & Gabriele Grandi, 2023. "A Generalized Approach for Determining the Current Ripple RMS in Four-Leg Inverters with the Neutral Inductor," Energies, MDPI, vol. 16(4), pages 1-19, February.
    4. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Watcharakorn Pinthurat & Branislav Hredzak, 2021. "Distributed Control Strategy of Single-Phase Battery Systems for Compensation of Unbalanced Active Powers in a Three-Phase Four-Wire Microgrid," Energies, MDPI, vol. 14(24), pages 1-17, December.
    6. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Kamran Ali Memon & Ben Horan & Anzar Mahmood & Saad Mekhilef, 2020. "An Integrated Approach to Optimal Charging Scheduling of Electric Vehicles Integrated with Improved Medium-Voltage Network Reconfiguration for Power Loss Minimization," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    7. Guo, Qi & Xiao, Fan & Tu, Chunming & Jiang, Fei & Zhu, Rongwu & Ye, Jian & Gao, Jiayuan, 2022. "An overview of series-connected power electronic converter with function extension strategies in the context of high-penetration of power electronics and renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6253-:d:452169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.