IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6068-d447925.html
   My bibliography  Save this article

Impact of Wall Constructions on Energy Performance of Switchable Insulation Systems

Author

Listed:
  • Remy Carlier

    (Department of Electromechanical, Systems & Metal Engineering, Ghent University, 9052 Ghent, Belgium)

  • Mohammad Dabbagh

    (Civil, Environmental, and Architectural Engineering Department, University of Colorado Boulder, Boulder, CO 80309, USA)

  • Moncef Krarti

    (Civil, Environmental, and Architectural Engineering Department, University of Colorado Boulder, Boulder, CO 80309, USA)

Abstract

This paper evaluates the potential energy savings when switchable insulation systems (SIS) are applied to walls of residential buildings located in Belgium and other locations in Europe. The study considers two low-energy prototypical dwellings (an apartment and a detached house) that are representative of post-2010 constructions and renovations in Belgium. Using an 3R2C-based analysis tool, the performance of both dwellings is evaluated with static and dynamic wall insulation systems. First, the switchable insulating system is described along with its associated simple 2-step rule-based control strategy. Then the modeling strategy and simulation analysis tools are presented. In Belgium, it was found that SIS-integrated walls allow energy savings up to 3.7% for space heating and up to 98% for cooling. Moreover, it was found that to further reduce the energy consumption of SIS-integrated buildings in various European climates, thermal mass placement needs to be considered. By optimizing the placement and the parameters of the various wall layers, it is possible to increase the space heating savings by up to a factor of 4 and those of cooling by up to a factor of 2.5.

Suggested Citation

  • Remy Carlier & Mohammad Dabbagh & Moncef Krarti, 2020. "Impact of Wall Constructions on Energy Performance of Switchable Insulation Systems," Energies, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6068-:d:447925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuznik, Frédéric & Virgone, Joseph & Johannes, Kevyn, 2011. "In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard," Renewable Energy, Elsevier, vol. 36(5), pages 1458-1462.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    2. Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
    3. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M, 2016. "Application of weather forecast in conjunction with price-based method for PCM solar passive buildings – An experimental study," Applied Energy, Elsevier, vol. 163(C), pages 9-18.
    4. Jaewook Lee & Jiyoung Park, 2018. "Phase Change Material (PCM) Application in a Modernized Korean Traditional House (Hanok)," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    5. Abden, Md Jaynul & Tao, Zhong & Pan, Zhu & George, Laurel & Wuhrer, Richard, 2020. "Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation," Applied Energy, Elsevier, vol. 259(C).
    6. Zhou, Dan & Eames, Philip, 2019. "Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control," Renewable Energy, Elsevier, vol. 139(C), pages 507-514.
    7. Georgios Martinopoulos & Anna Serasidou & Panagiota Antoniadou & Agis M. Papadopoulos, 2018. "Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    8. Miranda Fuentes, Johann & Johannes, Kévyn & Kuznik, Frédéric & Cosnier, Matthieu & Virgone, Joseph, 2013. "Melting with convection and radiation in a participating phase change material," Applied Energy, Elsevier, vol. 109(C), pages 454-461.
    9. Zhou, D. & Shire, G.S.F. & Tian, Y., 2014. "Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW)," Applied Energy, Elsevier, vol. 119(C), pages 33-42.
    10. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.
    11. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    12. Sandra Cunha & Antonella Sarcinella & José Aguiar & Mariaenrica Frigione, 2023. "Perspective on the Development of Energy Storage Technology Using Phase Change Materials in the Construction Industry: A Review," Energies, MDPI, vol. 16(12), pages 1-32, June.
    13. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    14. Liu, Jiang & Liu, Yan & Yang, Liu & Liu, Tang & Zhang, Chen & Dong, Hong, 2020. "Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China," Renewable Energy, Elsevier, vol. 147(P1), pages 356-373.
    15. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    16. Buonomano, Annamaria & Guarino, Francesco, 2020. "The impact of thermophysical properties and hysteresis effects on the energy performance simulation of PCM wallboards: Experimental studies, modelling, and validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    17. Yue Hu & Rui Guo & Per Kvols Heiselberg & Hicham Johra, 2020. "Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications," Energies, MDPI, vol. 13(23), pages 1-21, December.
    18. Ohayon-Lavi, Avia & Lavi, Adi & Alatawna, Amr & Ruse, Efrat & Ziskind, Gennady & Regev, Oren, 2021. "Graphite-based shape-stabilized composites for phase change material applications," Renewable Energy, Elsevier, vol. 167(C), pages 580-590.
    19. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    20. Guarino, Francesco & Athienitis, Andreas & Cellura, Maurizio & Bastien, Diane, 2017. "PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates," Applied Energy, Elsevier, vol. 185(P1), pages 95-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6068-:d:447925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.