IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5981-d445958.html
   My bibliography  Save this article

Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin

Author

Listed:
  • Chunhui Cao

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China)

  • Liwu Li

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China)

  • Yuhu Liu

    (Northeast Oil and Gas Branch, Sinopec, Changchun 130062, China)

  • Li Du

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China)

  • Zhongping Li

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China)

  • Jian He

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China)

Abstract

The Weiyuan (WY) and Changning (CN) fields are the largest shale gas fields in the Sichuan Basin. Though the shale gases in both fields are sourced from the Longmaxi Formation, this study found notable differences between them in molecular composition, carbon isotopic composition, and noble gas abundance and isotopic composition. CO 2 (av. 0.52%) and N 2 (av. 0.94%) were higher in Weiyuan than in Changning by an average of 0.45% and 0.70%, respectively. The δ 13 C 1 (−26.9% to −29.7%) and δ 13 C 2 (−32.0% to −34.9%) ratios in the Changning shale gases were about 8% and 6% heavier than those in Weiyuan, respectively. Both shale gases had similar 3 He/ 4 He ratios but different 40 Ar/ 36 Ar ratios. These geochemical differences indicated complex geological conditions and shed light on the evolution of the Lonmaxi shale gas in the Sichuan Basin. In this study, we highlight the possible impacts on the geochemical characteristics of gas due to tectonic activity, thermal evolution, and migration. By combining previous gas geochemical data and the geological background of these natural gas fields, we concluded that four factors account for the differences in the Longmaxi Formation shale gas in the Sichuan Basin: a) A different ratio of oil cracking gas and kerogen cracking gas mixed in the closed system at the high over-mature stage. b) The Longmaxi shales in WY and CN have had differential geothermal histories, especially in terms of the effects from the Emeishan Large Igneous Province (LIP), which have led to the discrepancy in evolution of the shales in the two areas. c) The heterogeneity of the Lower Silurian Longmaxi shales is another important factor, according to the noble gas data. d) Although shale gas is generated in closed systems, natural gas loss throughout geological history cannot be avoided, which also accounts for gas geochemical differences. This research offers some useful information regarding the theory of shale gas generation and evolution.

Suggested Citation

  • Chunhui Cao & Liwu Li & Yuhu Liu & Li Du & Zhongping Li & Jian He, 2020. "Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin," Energies, MDPI, vol. 13(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5981-:d:445958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    2. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    3. Zhiyao Zhang & Shang Xu & Qiyang Gou & Qiqi Li, 2022. "Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review," Energies, MDPI, vol. 15(22), pages 1-21, November.
    4. Yuanyuan Tian & Qing Chen & Changhui Yan & Hongde Chen & Yanqing He & Yufeng He, 2022. "A New Adsorption Equation for Nano-Porous Shale Rocks and Its Application in Pore Size Distribution Analysis," Energies, MDPI, vol. 15(9), pages 1-13, April.
    5. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    6. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    7. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Zheng, Tianyu & Luo, Bing & Li, Jing & Yu, Rui, 2019. "Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China," Energy, Elsevier, vol. 174(C), pages 861-872.
    8. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    9. Bryan X. Medina-Rodriguez & Vladimir Alvarado, 2021. "Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization," Energies, MDPI, vol. 14(10), pages 1-24, May.
    10. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    11. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    12. Wu, Jianguo & Luo, Chao & Zhong, Kesu & Li, Yi & Li, Guoliang & Du, Zhongming & Yang, Jijin, 2023. "Innovative characterization of organic nanopores in marine shale by the integration of HIM and SEM," Energy, Elsevier, vol. 282(C).
    13. Lenhard, L.G. & Andersen, S.M. & Coimbra-Araújo, C.H., 2018. "Energy-Environmental Implications Of Shale Gas Exploration In Paraná Hydrological Basin, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 56-69.
    14. Yunna, Wu & Kaifeng, Chen & Yisheng, Yang & Tiantian, Feng, 2015. "A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 235-243.
    15. Wang, Qiang & Zhan, Lina, 2019. "Assessing the sustainability of the shale gas industry by combining DPSIRM model and RAGA-PP techniques: An empirical analysis of Sichuan and Chongqing, China," Energy, Elsevier, vol. 176(C), pages 353-364.
    16. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Wang, Yaping & Yang, Xuan & Luo, Bing & Zhang, Wang & Zhang, Xinwen & Li, Changrong & Wang, Qifeng & Li, Caijun, 2021. "Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins," Energy, Elsevier, vol. 222(C).
    17. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    18. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    19. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    20. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5981-:d:445958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.