IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5811-d441074.html
   My bibliography  Save this article

Implementation Framework for Energy Flexibility Technologies in Alkmaar and Évora

Author

Listed:
  • Nienke Maas

    (TNO—Netherlands Organization of Applied Scientific Research, NL-2595 DA, 96800 The Hague, The Netherlands)

  • Vasiliki Georgiadou

    (TNO—Netherlands Organization of Applied Scientific Research, NL-2595 DA, 96800 The Hague, The Netherlands)

  • Stephanie Roelofs

    (TNO—Netherlands Organization of Applied Scientific Research, NL-2595 DA, 96800 The Hague, The Netherlands)

  • Rui Amaral Lopes

    (UNINOVA—Instituto Desenvolvimento de Novas Tecnologias, Faculdade De Ciências E Tecnologia, 2829-517 Caparica, Portugal)

  • Anabela Pronto

    (UNINOVA—Instituto Desenvolvimento de Novas Tecnologias, Faculdade De Ciências E Tecnologia, 2829-517 Caparica, Portugal)

  • João Martins

    (UNINOVA—Instituto Desenvolvimento de Novas Tecnologias, Faculdade De Ciências E Tecnologia, 2829-517 Caparica, Portugal)

Abstract

As energy generation based on renewable resources does not always match energy consumption profiles, Positive Energy Districts (PEDs) should embody energy flexibility technologies to decrease possible negative impacts on existing grids due to, e.g., reverse power flows. As part of the EU H2020 Smart Cities and Communities project POCITYF, the cities Alkmaar (NL) and Évora (PT) aim to support the deployment and market uptake of such districts and in doing so demonstrate innovative and integrated technologies to enable flexibility in the energy system. This paper addresses implementation conditions for energy flexibility technologies that help cities to engender the expected impact and ensure replication of these technologies to other sites. It aims to guide both urban planners and technology solution providers through pitfalls and opportunities that can appear during the design and implementation of PEDs. Taking this into consideration, the RUGGEDISED innovation and implementation framework for smart city technology was taken as a starting point to describe and analyze the experiences in Alkmaar and Évora.

Suggested Citation

  • Nienke Maas & Vasiliki Georgiadou & Stephanie Roelofs & Rui Amaral Lopes & Anabela Pronto & João Martins, 2020. "Implementation Framework for Energy Flexibility Technologies in Alkmaar and Évora," Energies, MDPI, vol. 13(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5811-:d:441074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lopes, Rui Amaral & Magalhães, Pedro & Gouveia, João Pedro & Aelenei, Daniel & Lima, Celson & Martins, João, 2018. "A case study on the impact of nearly Zero-Energy Buildings on distribution transformer aging," Energy, Elsevier, vol. 157(C), pages 669-678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Hainoun & Hans-Martin Neumann & Naomi Morishita-Steffen & Baptiste Mougeot & Étienne Vignali & Florian Mandel & Felix Hörmann & Sebastian Stortecky & Katharina Walter & Martin Kaltenhauser-Barth &, 2022. "Smarter Together: Monitoring and Evaluation of Integrated Building Solutions for Low-Energy Districts of Lighthouse Cities Lyon, Munich, and Vienna," Energies, MDPI, vol. 15(19), pages 1-26, September.
    2. Paola Clerici Maestosi, 2021. "Smart Cities and Positive Energy Districts: Urban Perspectives in 2020," Energies, MDPI, vol. 14(9), pages 1-5, April.
    3. Sandra Giraldo & David la Rotta & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortúa, 2021. "Digital Transformation of Energy Companies: A Colombian Case Study," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
    2. Amaral Lopes, Rui & Grønborg Junker, Rune & Martins, João & Murta-Pina, João & Reynders, Glenn & Madsen, Henrik, 2020. "Characterisation and use of energy flexibility in water pumping and storage systems," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5811-:d:441074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.