IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5617-d435447.html
   My bibliography  Save this article

Quantifying the Flexibility of Electric Vehicles in Germany and California—A Case Study

Author

Listed:
  • Michel Zade

    (Chair of Energy Economy and Application Technology, TUM Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany)

  • Zhengjie You

    (Chair of Energy Economy and Application Technology, TUM Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany)

  • Babu Kumaran Nalini

    (Chair of Energy Economy and Application Technology, TUM Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany)

  • Peter Tzscheutschler

    (Chair of Energy Economy and Application Technology, TUM Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany)

  • Ulrich Wagner

    (Chair of Energy Economy and Application Technology, TUM Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany)

Abstract

The adoption of electric vehicles is incentivized by governments around the world to decarbonize the mobility sector. Simultaneously, the continuously increasing amount of renewable energy sources and electric devices such as heat pumps and electric vehicles leads to congested grids. To meet this challenge, several forms of flexibility markets are currently being researched. So far, no analysis has calculated the actual flexibility potential of electric vehicles with different operating strategies, electricity tariffs and charging power levels while taking into account realistic user behavior. Therefore, this paper presents a detailed case study of the flexibility potential of electric vehicles for fixed and dynamic prices, for three charging power levels in consideration of Californian and German user behavior. The model developed uses vehicle and mobility data that is publicly available from field trials in the USA and Germany, cost-optimizes the charging process of the vehicles, and then calculates the flexibility of each electric vehicle for every 15 min. The results show that positive flexibility is mostly available during either the evening or early morning hours. Negative flexibility follows the periodic vehicle availability at home if the user chooses to charge the vehicle as late as possible. Increased charging power levels lead to increased amounts of flexibility. Future research will focus on the integration of stochastic forecasts for vehicle availability and electricity tariffs.

Suggested Citation

  • Michel Zade & Zhengjie You & Babu Kumaran Nalini & Peter Tzscheutschler & Ulrich Wagner, 2020. "Quantifying the Flexibility of Electric Vehicles in Germany and California—A Case Study," Energies, MDPI, vol. 13(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5617-:d:435447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    2. Atabay, Dennis, 2017. "An open-source model for optimal design and operation of industrial energy systems," Energy, Elsevier, vol. 121(C), pages 803-821.
    3. Radecke, Julia & Hefele, Joseph & Hirth, Lion, 2019. "Markets for Local Flexibility in Distribution Networks," EconStor Preprints 204559, ZBW - Leibniz Information Centre for Economics.
    4. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    5. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    6. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    7. Steffen Limmer, 2019. "Dynamic Pricing for Electric Vehicle Charging—A Literature Review," Energies, MDPI, vol. 12(18), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    2. Pedro Faria & Zita Vale, 2023. "Demand Response in Smart Grids," Energies, MDPI, vol. 16(2), pages 1-3, January.
    3. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2022. "Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-38, June.
    4. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
    5. Kumar, Gokula Manikandan Senthil & Cao, Sunliang, 2023. "Leveraging energy flexibilities for enhancing the cost-effectiveness and grid-responsiveness of net-zero-energy metro railway and station systems," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    2. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    3. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    4. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.
    5. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
    6. Eva Niesten & Albert Jolink, 2014. "Absence of a market in the Dutch balancing mechanism: European rules versus specific investments," European Journal of Law and Economics, Springer, vol. 38(1), pages 71-90, August.
    7. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    8. Min-fan He & Fu-xing Zhang & Yong Huang & Jian Chen & Jue Wang & Rui Wang, 2019. "A Distributed Demand Side Energy Management Algorithm for Smart Grid," Energies, MDPI, vol. 12(3), pages 1-19, January.
    9. Johannes Dock & Stefan Wallner & Anna Traupmann & Thomas Kienberger, 2022. "Provision of Demand-Side Flexibility through the Integration of Power-to-Gas Technologies in an Electric Steel Mill," Energies, MDPI, vol. 15(16), pages 1-22, August.
    10. Sara Tavakoli & Kaveh Khalilpour, 2021. "A Practical Load Disaggregation Approach for Monitoring Industrial Users Demand with Limited Data Availability," Energies, MDPI, vol. 14(16), pages 1-27, August.
    11. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    12. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Nataf, Kalen & Bradley, Thomas H., 2016. "An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities," Applied Energy, Elsevier, vol. 164(C), pages 133-139.
    14. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    15. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    16. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    17. Horowitz, Shira & Mauch, Brandon & Sowell, Fallaw, 2014. "Forecasting residential air conditioning loads," Applied Energy, Elsevier, vol. 132(C), pages 47-55.
    18. Balasubramanian, S. & Balachandra, P., 2021. "Effectiveness of demand response in achieving supply-demand matching in a renewables dominated electricity system: A modelling approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Jan Stede & Karin Arnold & Christa Dufter & Georg Holtz & Serafin von Roon & Jörn C. Richstein, 2020. "The Role of Aggregators in Facilitating Industrial Demand Response: Evidence from Germany," Discussion Papers of DIW Berlin 1840, DIW Berlin, German Institute for Economic Research.
    20. Müller, Theresa & Möst, Dominik, 2018. "Demand Response Potential: Available when Needed?," Energy Policy, Elsevier, vol. 115(C), pages 181-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5617-:d:435447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.