IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5521-d432404.html
   My bibliography  Save this article

Research on Economic Evaluation Methods of Offshore Oil Multi-Platform Interconnected Power System Considering Petroleum Production Characteristics

Author

Listed:
  • Yuming Liu

    (State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100080, China)

  • Qingguang Yu

    (State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100080, China)

  • Gaoxiang Long

    (State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100080, China)

  • Zhicheng Jiang

    (State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100080, China)

Abstract

Offshore oil multi-platform interconnected power system is developing rapidly. The proposal of an effective economic evaluation method that fits the actual production situation of offshore oilfields is very meaningful for the planning and construction of multi-platform interconnected power systems. This article proposes the electric depreciation, depletion, and amortization (DD&A) barrel oil cost S and maximum expected benefit per unit power generation I e as economic indicators, considering the actual production characteristics and life cycle of the oil field. In order to build a complete economic evaluation system, this article also introduces the N−1 pass rate η N − 1 , voltage qualification rate γ, power supply reliability ASAI (Average Service Availability Index), and other reliability indicators to evaluate the offshore power system. When calculating the weight of the indicators, analytic hierarchy method (AHP) was applied to calculate subjective weights, and an entropy method was applied to calculate objective weights. To unify the two weights, the ideal point method is proposed to obtain compound weights. Finally, this article selects an offshore oil field in Bohai Bay, China as example, and analyses short-term small-scale, long-term large-scale, and actual power system as calculation examples in different planning periods. The analysis result verifies the effectiveness of the economic evaluation method.

Suggested Citation

  • Yuming Liu & Qingguang Yu & Gaoxiang Long & Zhicheng Jiang, 2020. "Research on Economic Evaluation Methods of Offshore Oil Multi-Platform Interconnected Power System Considering Petroleum Production Characteristics," Energies, MDPI, vol. 13(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5521-:d:432404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    2. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    3. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    4. Soam, Shveta & Kumar, Ravindra & Gupta, Ravi P. & Sharma, Pankaj K. & Tuli, Deepak K. & Das, Biswapriya, 2015. "Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme," Energy, Elsevier, vol. 83(C), pages 307-315.
    5. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    6. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2018. "Performance assessment of primary petroleum production cogeneration plants," Energy, Elsevier, vol. 160(C), pages 233-244.
    7. Luca Riboldi & Marcin Pilarczyk & Lars O. Nord, 2021. "The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems," Energies, MDPI, vol. 14(23), pages 1-15, December.
    8. Nascimento Silva, Fernanda Cristina & Alkmin Freire, Ronaldo Lucas & Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2020. "Comparative assessment of advanced power generation and carbon sequestration plants on offshore petroleum platforms," Energy, Elsevier, vol. 203(C).
    9. Li, Zhuochao & Zhang, Haoran & Meng, Jing & Long, Yin & Yan, Yamin & Li, Meixuan & Huang, Zhongliang & Liang, Yongtu, 2020. "Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading," Applied Energy, Elsevier, vol. 261(C).
    10. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.
    11. Carranza Sánchez, Yamid Alberto & de Oliveira, Silvio, 2015. "Exergy analysis of offshore primary petroleum processing plant with CO2 capture," Energy, Elsevier, vol. 88(C), pages 46-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5521-:d:432404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.