IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5136-d423001.html
   My bibliography  Save this article

Investigation on the Performance Characteristics of 2-Stroke Heavy Fuel Light Aeroengine (2SHFLA) with Different Fuel Injection Systems: Modeling and Comparative Simulation

Author

Listed:
  • Yuan Qiao

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Li Lin

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Wei Zhong

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Kaisheng Huang

    (State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
    The Joint Laboratory for Internet of Vehicles, Ministry of Education-China Mobile Communications Corporation, Beijing 100084, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China)

Abstract

Extensive application of small and medium-sized unmanned aerial vehicles (UAVs) have already made the development of corresponding power system a research hotspot nowadays. Two-stroke heavy fuel light aeroengine (2SHFLA) is selected as the research focus in this paper. The working principle of 2SHFLA with different fuel injection systems is elaborated systematically. By dividing the initial prototype engine into several subsystems, the simulation platform is set up with its key model parameters accurately calibrated against the test data. Simulation platforms of the other two types of engines are subsequently constructed based on the pre-calibrated simulation platform of the initial prototype engine. Afterwards, comparative simulation is performed and the corresponding simulation results include: (1) comparison of performance characteristics of the initial prototype engine fueled with regular gasoline/heavy fuel; (2) comprehensive comparison of the performance characteristics of all the three types of engine.

Suggested Citation

  • Yuan Qiao & Li Lin & Wei Zhong & Kaisheng Huang, 2020. "Investigation on the Performance Characteristics of 2-Stroke Heavy Fuel Light Aeroengine (2SHFLA) with Different Fuel Injection Systems: Modeling and Comparative Simulation," Energies, MDPI, vol. 13(19), pages 1-39, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5136-:d:423001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sousa, Jorge & Paniagua, Guillermo & Collado Morata, Elena, 2017. "Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor," Applied Energy, Elsevier, vol. 195(C), pages 247-256.
    2. Yuan Qiao & Xucheng Duan & Kaisheng Huang & Yizhou Song & Jianan Qian, 2018. "Scavenging Ports’ Optimal Design of a Two-Stroke Small Aeroengine Based on the Benson/Bradham Model," Energies, MDPI, vol. 11(10), pages 1-26, October.
    3. Fu-Kang Ma & Jun Wang & Yao-Nan Feng & Yan-Gang Zhang & Tie-Xiong Su & Yi Zhang & Yu-Hang Liu, 2017. "Parameter Optimization on the Uniflow Scavenging System of an OP2S-GDI Engine Based on Indicated Mean Effective Pressure (IMEP)," Energies, MDPI, vol. 10(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    2. Panagiotis Gallis & Daniela Anna Misul & Bastien Boust & Marc Bellenoue & Simone Salvadori, 2024. "Development of 1D Model of Constant-Volume Combustor and Numerical Analysis of the Exhaust Nozzle," Energies, MDPI, vol. 17(5), pages 1-24, March.
    3. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2023. "Thermodynamic performance study of large-scale industrial gas turbine with methane/ammonia/hydrogen blended fuels," Energy, Elsevier, vol. 282(C).
    4. Qi, Lei & Dong, Jingnan & Hong, Wenpeng & Wang, Mingtian & Lu, Tao, 2023. "Investigation of rotating detonation gas turbine cycle under design and off-design conditions," Energy, Elsevier, vol. 264(C).
    5. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    6. Alex G. Young & Aaron W. Costall & Daniel Coren & James W. G. Turner, 2021. "The Effect of Crankshaft Phasing and Port Timing Asymmetry on Opposed-Piston Engine Thermal Efficiency," Energies, MDPI, vol. 14(20), pages 1-20, October.
    7. Jan Kindracki & Krzysztof Wacko & Przemysław Woźniak & Stanisław Siatkowski & Łukasz Mężyk, 2020. "Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures," Energies, MDPI, vol. 13(19), pages 1-16, September.
    8. Wei Yang & Lei Zhang & Fukang Ma & Dan Xu & Wenjing Ji & Yangyang Zhao & Jianing Zhang, 2022. "Simulation about the Effect of the Height-to-Stroke Ratios of Ports on Power and Emissions in an OP2S Engine Using Diesel/Methanol Blends," Energies, MDPI, vol. 15(8), pages 1-14, April.
    9. Jingming Zhao & Xiaolong Hao & Kai Zhang & Yuanyuan Li & Guanghui Zhang, 2023. "Investigation of the Vibration Transmission Characteristics of the Aero-Engine Casing System by Rotating Force Exciter," Energies, MDPI, vol. 16(4), pages 1-13, February.
    10. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    11. Michele Stefanizzi & Tommaso Capurso & Giovanni Filomeno & Marco Torresi & Giuseppe Pascazio, 2021. "Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques," Energies, MDPI, vol. 14(20), pages 1-20, October.
    12. Yuan Qiao & Xucheng Duan & Kaisheng Huang & Yizhou Song & Jianan Qian, 2018. "Scavenging Ports’ Optimal Design of a Two-Stroke Small Aeroengine Based on the Benson/Bradham Model," Energies, MDPI, vol. 11(10), pages 1-26, October.
    13. Wu, Yuwen & Weng, Chunsheng & Zheng, Quan & Wei, Wanli & Bai, Qiaodong, 2021. "Experimental research on the performance of a rotating detonation combustor with a turbine guide vane," Energy, Elsevier, vol. 218(C).
    14. Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.
    15. Tianyou Pei & Feixue Chen & Shuheng Qiu & Dawei Wu & Weiwei Gao & Zhaoping Xu & Chi Zhang, 2022. "Research on the Intake Port of a Uniflow Scavenging GDI Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 15(6), pages 1-15, March.
    16. Ruomiao Yang & Tianfang Xie & Zhentao Liu, 2022. "The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines," Energies, MDPI, vol. 15(9), pages 1-16, April.
    17. Jaeyoung Han & Jiwoong Jeong & Kyungin Cho & Sangseok Yu, 2018. "A Real-Time Combustion Instability Simulation with Comprehensive Thermo-Acoustic Dynamic Model," Energies, MDPI, vol. 11(4), pages 1-21, April.
    18. Borghi, Massimo & Mattarelli, Enrico & Muscoloni, Jarin & Rinaldini, Carlo Alberto & Savioli, Tommaso & Zardin, Barbara, 2017. "Design and experimental development of a compact and efficient range extender engine," Applied Energy, Elsevier, vol. 202(C), pages 507-526.
    19. Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.
    20. Ding, Chenwei & Wu, Yuwen & Huang, Yakun & Zheng, Quan & Li, Qun & Xu, Gao & Kang, Chaohui & Weng, Chunsheng, 2023. "Wave mode analysis of a turbine guide vane-integrated rotating detonation combustor based on instantaneous frequency identification," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5136-:d:423001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.