IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4889-d415396.html
   My bibliography  Save this article

A Practical Approach to Optimising Distribution Transformer Tap Settings

Author

Listed:
  • Joshua Paoli

    (School of Engineering, University of Tasmania, Hobart 7001, Australia)

  • Bernd Brinkmann

    (TasNetworks, Lenah Valley 7008, Australia)

  • Michael Negnevitsky

    (School of Engineering, University of Tasmania, Hobart 7001, Australia)

Abstract

This paper proposes a method of determining the optimal tap settings for no-load distribution transformers with tap-changing capabilities that is practical to apply in real distribution networks. The risk of low voltage distribution networks violating voltage constraints is impacted by the increasing uptake of distributed energy resources and embedded generation. Some of this risk can be alleviated by suitably setting no-load transformer tap settings, however, modifying these taps requires customer outages and must be infrequent. Hence, loading over the entire year must be considered to account for seasonal variations when setting these taps optimally. These settings are determined using evolution strategy optimisation based on an average loading case. Monte Carlo simulations are used to calculate the probability that the terminal voltages on the distribution transformer secondary terminals violate the network voltage limits when the optimal set of taps for the average case is applied over a whole year. This algorithm was tested on several cases of a real distribution feeder of varying complexity, and produces a sufficiently-optimal set of taps without significant computation time.

Suggested Citation

  • Joshua Paoli & Bernd Brinkmann & Michael Negnevitsky, 2020. "A Practical Approach to Optimising Distribution Transformer Tap Settings," Energies, MDPI, vol. 13(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4889-:d:415396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haque, M. Mejbaul & Wolfs, Peter, 2016. "A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1195-1208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammed Sait Aydin & Sahban W. Alnaser & Sereen Z. Althaher, 2022. "Using OLTC-Fitted Distribution Transformer to Increase Residential PV Hosting Capacity: Decentralized Voltage Management Approach," Energies, MDPI, vol. 15(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Schick & Nikolai Klempp & Kai Hufendiek, 2021. "Impact of Network Charge Design in an Energy System with Large Penetration of Renewables and High Prosumer Shares," Energies, MDPI, vol. 14(21), pages 1-26, October.
    2. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    3. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    4. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    5. Elutunji Buraimoh & Innocent E. Davidson & Fernando Martinez-Rodrigo, 2019. "Fault Ride-Through Enhancement of Grid Supporting Inverter-Based Microgrid Using Delayed Signal Cancellation Algorithm Secondary Control," Energies, MDPI, vol. 12(20), pages 1-26, October.
    6. Jinlin Li & Tianjun Jing & Jiangbo Wang & Kun Wang & Lei Wang, 2019. "Study on the Limit Penetration Level Evaluation Method of Distributed Photovoltaics Based on Large Sample Generation-Load Data," Energies, MDPI, vol. 12(18), pages 1-19, September.
    7. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    8. Jiaqi Gu & Fei Mei & Jixiang Lu & Jinjun Lu & Jingcheng Chen & Xinmin Zhang & Limin Li, 2020. "Three-Stage Analysis of the Maximum Accommodation Capacity of a Distribution System with High Photovoltaic Penetration," Energies, MDPI, vol. 13(17), pages 1-18, August.
    9. dos Santos, L.L.C. & Canha, L.N. & Bernardon, D.P., 2018. "Projection of the diffusion of photovoltaic systems in residential low voltage consumers," Renewable Energy, Elsevier, vol. 116(PA), pages 384-401.
    10. Rong-Ceng Leou & Jen-Hao Teng & Yun-Fang Li & Wei-Min Lin & Yu-Hung Lin, 2020. "System Unbalance Analyses and Improvement for Rooftop Photovoltaic Generation Systems in Distribution Networks," Energies, MDPI, vol. 13(8), pages 1-18, April.
    11. Saif Ul Islam & Kamran Zeb & Soobae Kim, 2022. "Design of Robust Fuzzy Logic Controller Based on Gradient Descent Algorithm with Parallel-Resonance Type Fault Current Limiter for Grid-Tied PV System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    12. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    13. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    14. Kongrit Mansiri & Sukruedee Sukchai & Chatchai Sirisamphanwong, 2018. "Fuzzy Control for Smart PV-Battery System Management to Stabilize Grid Voltage of 22 kV Distribution System in Thailand," Energies, MDPI, vol. 11(7), pages 1-19, July.
    15. Sharma, Vanika & Aziz, Syed Mahfuzul & Haque, Mohammed H. & Kauschke, Travis, 2020. "Effects of high solar photovoltaic penetration on distribution feeders and the economic impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Iver Bakken Sperstad & Magnus Korpås, 2019. "Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties," Energies, MDPI, vol. 12(7), pages 1-24, March.
    17. Daisuke Iioka & Takahiro Fujii & Toshio Tanaka & Tsuyoshi Harimoto & Junpei Motoyama & Daisuke Nagae, 2021. "Improvement of Voltage Unbalance by Current Injection Based on Unbalanced Line Impedance in Distribution Network with PV System," Energies, MDPI, vol. 14(23), pages 1-16, December.
    18. Xu, Jian & Wang, Jing & Liao, Siyang & Sun, Yuanzhang & Ke, Deping & Li, Xiong & Liu, Ji & Jiang, Yibo & Wei, Congying & Tang, Bowen, 2018. "Stochastic multi-objective optimization of photovoltaics integrated three-phase distribution network based on dynamic scenarios," Applied Energy, Elsevier, vol. 231(C), pages 985-996.
    19. Andrea Reimuth & Veronika Locherer & Martin Danner & Wolfram Mauser, 2020. "How Does the Rate of Photovoltaic Installations and Coupled Batteries Affect Regional Energy Balancing and Self-Consumption of Residential Buildings?," Energies, MDPI, vol. 13(11), pages 1-18, May.
    20. Lee, J. & Bérard, Jean-Philippe & Razeghi, G. & Samuelsen, S., 2020. "Maximizing PV hosting capacity of distribution feeder microgrid," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4889-:d:415396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.