IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3981-d393498.html
   My bibliography  Save this article

A Numerical Model for Investigating the Steam Conformance along the Dual-String Horizontal Wells in SAGD Operations

Author

Listed:
  • Peng Li

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
    Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China)

  • Yanyu Zhang

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
    Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China)

  • Xiaofei Sun

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
    Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China)

  • Huijuan Chen

    (Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China)

  • Yang Liu

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

Abstract

Non-uniformity of the steam-assisted gravity drainage (SAGD) steam chamber significantly decreases the development of heavy oil reservoirs. In this study, to investigate the steam conformance in SAGD operations, a wellbore model is developed for fluid flow in dual-string horizontal wells. Then, a three-dimensional, three-phase reservoir model is presented. Next, the coupled wellbore and reservoir model is solved with a fully implicit finite difference method. Finally, the effects of the injector wellbore configuration, steam injection ratio and injection time on the steam conformance are investigated. The results indicate that under different injector wellbore configurations, the closer the differences between the pressure drop from the landing position of the short string to the heel of the wellbore and the pressure drop from the landing position of the short string to the toe of the wellbore, the better is the steam conformance. The smaller the difference in the steam injection rate between the long and short injection strings, the higher is the uniformity of the steam chamber. The injector annular pressure profile uniformity is consistent with the steam conformance. Creating a more uniform steam pressure in the annulus of the injector improves the uniformity of the steam chamber. The steam conformance decreases with increasing injection time, so the optimization method of steam chamber uniformity should be adjusted according to different injection times.

Suggested Citation

  • Peng Li & Yanyu Zhang & Xiaofei Sun & Huijuan Chen & Yang Liu, 2020. "A Numerical Model for Investigating the Steam Conformance along the Dual-String Horizontal Wells in SAGD Operations," Energies, MDPI, vol. 13(15), pages 1-38, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3981-:d:393498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Hao & Cheng, Linsong & Huang, Shijun & Du, Baojian & Hu, Changhao, 2014. "Prediction of thermophysical properties of saturated steam and wellbore heat losses in concentric dual-tubing steam injection wells," Energy, Elsevier, vol. 75(C), pages 419-429.
    2. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    3. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    2. Zhengbin Wu & Hanzhao Chen & Xidong Cai & Qiyang Gou & Liangliang Jiang & Kai Chen & Zhangxin Chen & Shu Jiang, 2023. "Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil," Energies, MDPI, vol. 16(12), pages 1-29, June.
    3. Hou, Hongjuan & Du, Qiongjie & Huang, Chang & Zhang, Le & Hu, Eric, 2021. "An oil shale recovery system powered by solar thermal energy," Energy, Elsevier, vol. 225(C).
    4. Afra, Mohammad & Peyghambarzadeh, S.M. & Shahbazi, Khalil & Tahmassebi, Narges, 2021. "Thermo-economic optimization of steam injection operation in enhanced oil recovery (EOR) using nano-thermal insulation," Energy, Elsevier, vol. 226(C).
    5. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    6. Fengrui Sun & Yuedong Yao & Xiangfang Li & Guozhen Li & Liang Huang & Hao Liu & Zhili Chen & Qing Liu & Wenyuan Liu & Meng Cao & Song Han, 2018. "Exploitation of heavy oil by supercritical CO2: Effect analysis of supercritical CO2 on H2O at superheated state in integral joint tubing and annuli," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 557-569, June.
    7. Sun, Fengrui & Yao, Yuedong & Li, Xiangfang, 2018. "The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique," Energy, Elsevier, vol. 143(C), pages 995-1005.
    8. Pang, Zhanxi & Wang, Luting & Yin, Fanghao & Lyu, Xiaocong, 2021. "Steam chamber expanding processes and bottom water invading characteristics during steam flooding in heavy oil reservoirs," Energy, Elsevier, vol. 234(C).
    9. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    10. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    11. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    12. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    13. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    14. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    15. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    16. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    17. Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
    18. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    19. Ying Shi & Hong He & Yu Li & Fei Ding & Zhuo Zhou & Nuolin Xiong, 2023. "High-Temperature-Resistant Epoxy Resin Gel Behavior and Profile Control in Heavy Oil Steam Drive," Energies, MDPI, vol. 17(1), pages 1-14, December.
    20. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3981-:d:393498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.