IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3601-d383784.html
   My bibliography  Save this article

A New Data-Based Dust Estimation Unit for PV Panels

Author

Listed:
  • Mostafa. F. Shaaban

    (Electrical and Computer Engineering Departments, American University of Sharjah, Sharjah 26666, UAE
    Electrical and Computer Engineering Department, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Amal Alarif

    (Electrical and Computer Engineering Departments, American University of Sharjah, Sharjah 26666, UAE)

  • Mohamed Mokhtar

    (Electrical and Computer Engineering Departments, American University of Sharjah, Sharjah 26666, UAE
    Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Usman Tariq

    (Electrical and Computer Engineering Departments, American University of Sharjah, Sharjah 26666, UAE)

  • Ahmed H. Osman

    (Electrical and Computer Engineering Departments, American University of Sharjah, Sharjah 26666, UAE)

  • A. R. Al-Ali

    (Electrical and Computer Engineering Departments, American University of Sharjah, Sharjah 26666, UAE)

Abstract

Solar photovoltaic (PV) is playing a major role in the United Arab Emirates (UAE) smart grid infrastructure. However, one of the challenges facing PV-based energy systems is the dust accumulation on solar panels. Dust accumulation on solar panels results in a high degradation in the output power. The UAE has low intensity rainfall and wind velocity; therefore solar panels must be cleaned manually or using automated cleaning methods. Estimating dust accumulation on solar panels will increase the output power and reduce maintenance costs by initiating cleaning actions only when required. In this paper, the impact of natural dust accumulation on solar panels is investigated using field measurements and regression modeling. Experimental data were collected under various real weather conditions and controlled levels of dust. Moreover, this paper proposes a data-driven approach based on machine learning to estimate the accumulated dust level on solar panels. In this approach, a dust estimation unit based on a regression tree model has been developed to estimate the dust accumulation. This unit is trained using experimental records of solar irradiance, ambient temperature, and the output power generated from solar panels as well as the amount of dust at these conditions. The proposed unit is evaluated through different case studies with a random amount of dust applied to the solar panels to demonstrate the accurate performance of the proposed unit.

Suggested Citation

  • Mostafa. F. Shaaban & Amal Alarif & Mohamed Mokhtar & Usman Tariq & Ahmed H. Osman & A. R. Al-Ali, 2020. "A New Data-Based Dust Estimation Unit for PV Panels," Energies, MDPI, vol. 13(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3601-:d:383784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    2. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    3. Kaldellis, J.K. & Fragos, P. & Kapsali, M., 2011. "Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations," Renewable Energy, Elsevier, vol. 36(10), pages 2717-2724.
    4. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    5. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    2. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    3. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Sun, Ke & Lu, Lin & Jiang, Yu & Wang, Yuanhao & Zhou, Kun & He, Zhu, 2018. "Integrated effects of PM2.5 deposition, module surface conditions and nanocoatings on solar PV surface glass transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4107-4120.
    5. Gabriel López & Diego Ramírez & Joaquín Alonso-Montesinos & Juan Sarmiento & Jesús Polo & Nuria Martín-Chivelet & Aitor Marzo & Francisco Javier Batlles & Pablo Ferrada, 2021. "Design of a Low-Cost Multiplexer for the Study of the Impact of Soiling on PV Panel Performance," Energies, MDPI, vol. 14(14), pages 1-12, July.
    6. Zaihidee, Fardila Mohd & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2016. "Dust as an unalterable deteriorative factor affecting PV panel's efficiency: Why and how," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1267-1278.
    7. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda, 2018. "Evaluation of cumulative impact of partial shading and aerosols on different PV array topologies through combined Shannon's entropy and DEA," Energy, Elsevier, vol. 144(C), pages 765-775.
    8. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    9. Klugmann-Radziemska, Ewa, 2015. "Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland," Renewable Energy, Elsevier, vol. 78(C), pages 418-426.
    10. Zeki Ahmed Darwish & Hussein A. Kazem & K. Sopian & M. A. Alghoul & Hussain Alawadhi, 2018. "Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: an experimental study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 155-174, February.
    11. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    12. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    13. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    15. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda & Yadav, Pankaj, 2017. "Evaluation of relative impact of aerosols on photovoltaic cells through combined Shannon's entropy and Data Envelopment Analysis (DEA)," Renewable Energy, Elsevier, vol. 105(C), pages 344-353.
    16. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    17. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Chanchangi, Yusuf N. & Ghosh, Aritra & Micheli, Leonardo & Fernández, Eduardo F. & Sundaram, Senthilarasu & Mallick, Tapas K., 2022. "Soiling mapping through optical losses for Nigeria," Renewable Energy, Elsevier, vol. 197(C), pages 995-1008.
    19. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    20. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3601-:d:383784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.