IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2648-d361959.html
   My bibliography  Save this article

Development of Full-Cycle Utilization of Chlorella sorokiniana Microalgae Biomass for Environmental and Food Purposes

Author

Listed:
  • Natalia Politaeva

    (Department of Institute of Civil Engineering, Peter the Great Sankt-Petersburg Polytechnic University, 194064 Saint Petersburg, Russia)

  • Yulia Smyatskaya

    (Department of Institute of Civil Engineering, Peter the Great Sankt-Petersburg Polytechnic University, 194064 Saint Petersburg, Russia)

  • Rafat Al Afif

    (Department of Material Sciences and Process, Institute of Chemical and Energy Engineering, Vienna Engineering, University of Natural Resources and Life Sciences, 1190 Vienna, Austria)

  • Christoph Pfeifer

    (Department of Material Sciences and Process Engineering, Vienna Institute of Chemical and Energy Engineering, University of Natural Resources and Life Sciences, 1190 Vienna, Austria)

  • Liliya Mukhametova

    (Department of Economics and Organization Production, Kazan State Power Engineering University, 420066 Kazan, Russia)

Abstract

The application of microalgae biomass of Chlorella sorokiniana as environmentally friendly biosorbents for removing potentially toxic elements (PTE) from water and as a source of biofuel has been thoroughly studied. In this paper, we investigate its physicochemical properties infrared spectroscopy (IR spectra), microstructure, adsorption properties); we have managed to isolate the lipid complex, which amounted to 20% of dry biomass. Studies of the lipid complex showed that 80.02% of lipids are unsaturated fatty acids (C18:1, C18:2, C18:3). Additionally, we have investigated the efficiency of using the residual biomass obtained after lipid extraction for water purification from rare-earth metals (REM) and PTE. To increase the sorption properties of residual biomass, its thermal modification was carried out and sorption materials based on heat-treated residual biomass and chitosan were created. The physicochemical and mechanical properties of the obtained sorption materials were studied. The total sorption capacity was 31.9 mg/g for REM and 349.7 mg/g for PTE. Moreover, we propose a new method for the disposal of spent sorbents as additional fuel. Spent sorbents can be considered to be biofuel in terms of energy content (20.7 MJ*kg −1 ). The results of this study provide the basis for increased use of microalgae.

Suggested Citation

  • Natalia Politaeva & Yulia Smyatskaya & Rafat Al Afif & Christoph Pfeifer & Liliya Mukhametova, 2020. "Development of Full-Cycle Utilization of Chlorella sorokiniana Microalgae Biomass for Environmental and Food Purposes," Energies, MDPI, vol. 13(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2648-:d:361959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Al Afif, Rafat & Wendland, Martin & Amon, Thomas & Pfeifer, Christoph, 2020. "Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production," Energy, Elsevier, vol. 194(C).
    3. Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    5. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    6. Al Afif, Rafat & Anayah, S. Sean & Pfeifer, Christoph, 2020. "Batch pyrolysis of cotton stalks for evaluation of biochar energy potential," Renewable Energy, Elsevier, vol. 147(P1), pages 2250-2258.
    7. Widjaya, Elita R. & Chen, Guangnan & Bowtell, Les & Hills, Catherine, 2018. "Gasification of non-woody biomass: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 184-193.
    8. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    9. Pragya, Namita & Pandey, Krishan K. & Sahoo, P.K., 2013. "A review on harvesting, oil extraction and biofuels production technologies from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 159-171.
    10. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Fedorov & Vladimir Maslikov & Vadim Korablev & Natalia Politaeva & Aleksandr Chusov & Dmitriy Molodtsov, 2022. "Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Al Afif, Rafat & Wendland, Martin & Amon, Thomas & Pfeifer, Christoph, 2020. "Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production," Energy, Elsevier, vol. 194(C).
    4. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    5. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    6. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Besek Mariam Mohamad Jahis & Zul Ilham & Sugenendran Supramani & Mohamad Nor Azzimi Sohedein & Mohamad Faizal Ibrahim & Suraini Abd-Aziz & Neil Rowan & Wan Abd Al Qadr Imad Wan-Mohtar, 2022. "Ganodiesel: A New Biodiesel Feedstock from Biomass of the Mushroom Ganoderma lucidum," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    8. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    9. Bello, Yusuf H. & Ahmed, Mahmoud A. & Ookawara, Shinichi & Elwardany, Ahmed E., 2022. "Numerical and experimental investigation on air distributor design of fluidized bed reactor of sawdust pyrolysis," Energy, Elsevier, vol. 239(PC).
    10. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.
    11. Ke, Cunfeng & Zhang, Yaning & Gao, Yanan & Pan, Yaoyu & Li, Bingxi & Wang, Yunpu & Ruan, Roger, 2019. "Syngas production from microwave-assisted air gasification of biomass: Part 1 model development," Renewable Energy, Elsevier, vol. 140(C), pages 772-778.
    12. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    13. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    14. Maria Hasnain & Neelma Munir & Zainul Abideen & Heather Macdonald & Maria Hamid & Zaheer Abbas & Ali El-Keblawy & Roberto Mancinelli & Emanuele Radicetti, 2023. "Prospects for Biodiesel Production from Emerging Algal Resource: Process Optimization and Characterization of Biodiesel Properties," Agriculture, MDPI, vol. 13(2), pages 1-29, February.
    15. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    16. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.
    17. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    18. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    19. Dinko Đurđević & Saša Žiković & Tomislav Čop, 2022. "Socio-Economic, Technical and Environmental Indicators for Sustainable Sewage Sludge Management and LEAP Analysis of Emissions Reduction," Energies, MDPI, vol. 15(16), pages 1-15, August.
    20. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2648-:d:361959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.