IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1789-d230177.html
   My bibliography  Save this article

Q-Learning-Based Operation Strategy for Community Battery Energy Storage System (CBESS) in Microgrid System

Author

Listed:
  • Van-Hai Bui

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 22012, Korea)

  • Akhtar Hussain

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 22012, Korea)

  • Hak-Man Kim

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 22012, Korea)

Abstract

Energy management systems (EMSs) of microgrids (MGs) can be broadly categorized as centralized or decentralized EMSs. The centralized approach may not be suitable for a system having several entities that have their own operation objectives. On the other hand, the use of the decentralized approach leads to an increase in the operation cost due to local optimization. In this paper, both centralized and decentralized approaches are combined for managing the operation of a distributed system, which is comprised of an MG and a community battery storage system (CBESS). The MG is formed by grouping all entities having the same operation objective and is operated under a centralized controller, i.e., a microgrid EMS (MG-EMS). The CBESS is operated by using its local controller with different operation objectives. A Q-learning-based operation strategy is proposed for optimal operation of CBESS in both grid-connected and islanded modes. The objective of CBESS in the grid-connected mode is to maximize its profit while the objective of CBESS in islanded mode is to minimize the load shedding amount in the entire system by cooperating with the MG. A comparison between the Q-learning-based strategy and a conventional centralized-based strategy is presented to show the effectiveness of the proposed strategy. In addition, an adjusted epsilon is also introduced for epsilon-greedy policy to reduce the learning time and improve the operation results.

Suggested Citation

  • Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2019. "Q-Learning-Based Operation Strategy for Community Battery Energy Storage System (CBESS) in Microgrid System," Energies, MDPI, vol. 12(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1789-:d:230177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunyong Kim & Hyuk Lim, 2018. "Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
    3. Hak-Man Kim & Tetsuo Kinoshita & Myong-Chul Shin, 2010. "A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment," Energies, MDPI, vol. 3(12), pages 1-19, December.
    4. Brida V. Mbuwir & Frederik Ruelens & Fred Spiessens & Geert Deconinck, 2017. "Battery Energy Management in a Microgrid Using Batch Reinforcement Learning," Energies, MDPI, vol. 10(11), pages 1-19, November.
    5. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    6. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    2. Fan Li & Dan Wang & Dong Liu & Songheng Yang & Ke Sun & Zhongjian Liu & Haoyang Yu & Jishuo Qin, 2023. "A Comprehensive Review on Energy Storage System Optimal Planning and Benefit Evaluation Methods in Smart Grids," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    3. Khawaja Haider Ali & Marvin Sigalo & Saptarshi Das & Enrico Anderlini & Asif Ali Tahir & Mohammad Abusara, 2021. "Reinforcement Learning for Energy-Storage Systems in Grid-Connected Microgrids: An Investigation of Online vs. Offline Implementation," Energies, MDPI, vol. 14(18), pages 1-18, September.
    4. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    5. K/bidi, Fabrice & Damour, Cedric & Grondin, Dominique & Hilairet, Mickaël & Benne, Michel, 2022. "Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    4. Chen, Pengzhan & Liu, Mengchao & Chen, Chuanxi & Shang, Xin, 2019. "A battery management strategy in microgrid for personalized customer requirements," Energy, Elsevier, vol. 189(C).
    5. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
    6. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    7. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    8. Grace Muriithi & Sunetra Chowdhury, 2021. "Optimal Energy Management of a Grid-Tied Solar PV-Battery Microgrid: A Reinforcement Learning Approach," Energies, MDPI, vol. 14(9), pages 1-24, May.
    9. Khawaja Haider Ali & Marvin Sigalo & Saptarshi Das & Enrico Anderlini & Asif Ali Tahir & Mohammad Abusara, 2021. "Reinforcement Learning for Energy-Storage Systems in Grid-Connected Microgrids: An Investigation of Online vs. Offline Implementation," Energies, MDPI, vol. 14(18), pages 1-18, September.
    10. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    11. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    12. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    13. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    14. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    15. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    16. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    17. Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
    18. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    19. Yi Kuang & Xiuli Wang & Hongyang Zhao & Yijun Huang & Xianlong Chen & Xifan Wang, 2020. "Agent-Based Energy Sharing Mechanism Using Deep Deterministic Policy Gradient Algorithm," Energies, MDPI, vol. 13(19), pages 1-20, September.
    20. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1789-:d:230177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.