IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1096-d215951.html
   My bibliography  Save this article

Nonlinear Model Establishment and Experimental Verification of a Pneumatic Rotary Actuator Position Servo System

Author

Listed:
  • Yeming Zhang

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Ke Li

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Geng Wang

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Jingcheng Liu

    (School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China)

  • Maolin Cai

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

Abstract

In order to accurately reflect the characteristics and motion states of a pneumatic rotary actuator position servo system, an accurate non-linear model of the valve-controlled actuator system is proposed, and its parameter identification and experimental verification are carried out. Firstly, in the modeling of this system, the mass flow rate of the gas flowing through each port of the proportional directional control valve is derived by taking into account the clearance between the valve spool and the sleeve, the heat transfer formula is used to the derivation of the energy equation, and the Stribeck model is applied to the friction model of the pneumatic rotary actuator. Then, the flow coefficient, the heat transfer coefficient and the friction parameters are identified by the model and pneumatic test circuits. After the verification experiment of the mass flow rate equations, the charging and discharging experiment reveals that the model can clearly show the effect of clearances on gas pressure changes and describe the effect of heat transfer on gas temperature changes. Finally, the results of model verification indicate that the simulation curves of rotation angle and two-chamber pressures are consistent with their experimental values, and the non-linear model shows high accuracy.

Suggested Citation

  • Yeming Zhang & Ke Li & Geng Wang & Jingcheng Liu & Maolin Cai, 2019. "Nonlinear Model Establishment and Experimental Verification of a Pneumatic Rotary Actuator Position Servo System," Energies, MDPI, vol. 12(6), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1096-:d:215951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Yan & Wu, Tiecheng & Cai, Maolin & Wang, Yixuan & Xu, Weiqing, 2016. "Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle," Applied Energy, Elsevier, vol. 171(C), pages 77-85.
    2. Dein Shaw & Jyun-Jhe Yu & Cheng Chieh, 2013. "Design of a Hydraulic Motor System Driven by Compressed Air," Energies, MDPI, vol. 6(7), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhonglin Lin & Qingyan Wei & Runmin Ji & Xianghua Huang & Yuan Yuan & Zhiwen Zhao, 2019. "An Electro-Pneumatic Force Tracking System using Fuzzy Logic Based Volume Flow Control," Energies, MDPI, vol. 12(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    2. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    3. Shi, Yan & Wu, Tiecheng & Cai, Maolin & Wang, Yixuan & Xu, Weiqing, 2016. "Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle," Applied Energy, Elsevier, vol. 171(C), pages 77-85.
    4. Yonghong Xu & Xin Wang & Hongguang Zhang & Fubin Yang & Jia Liang & Hailong Yang & Kai Niu & Zhuxian Liu & Yan Wang & Yuting Wu, 2022. "Experimental Investigation of the Output Performance of Compressed-Air-Powered Vehicles with a Pneumatic Motor," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    5. Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
    6. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    7. Brol, Sebastian & Czok, Rafał & Mróz, Piotr, 2020. "Control of energy conversion and flow in hydraulic-pneumatic system," Energy, Elsevier, vol. 194(C).
    8. Pugi, L. & Pagliai, M. & Nocentini, A. & Lutzemberger, G. & Pretto, A., 2017. "Design of a hydraulic servo-actuation fed by a regenerative braking system," Applied Energy, Elsevier, vol. 187(C), pages 96-115.
    9. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    10. Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
    11. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1096-:d:215951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.